Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Graphs drawn in the plane are ubiquitous, arising from data sets through a variety of methods ranging from GIS analysis to image classification to shape analysis. A fundamental problem in this type of data is comparison: given a set of such graphs, can we rank how similar they are in such a way that we capture their geometric “shape” in the plane? We explore a method to compare two such embedded graphs, via a simplified combinatorial representation called a tailless merge tree which encodes the structure based on a fixed direction. First, we examine the properties of a distance designed to compare merge trees called the branching distance, and show that the distance as defined in previous work fails to satisfy some of the requirements of a metric. We incorporate this into a new distance function called average branching distance to compare graphs by looking at the branching distance for merge trees defined over many directions. Despite the theoretical issues, we show that the definition is still quite useful in practice by using our opensource code to cluster data sets of embedded graphs.more » « lessFree, publiclyaccessible full text available January 1, 2024

Abstract Graphs in metric spaces appear in a wide range of data sets, and there is a large body of work focused on comparing, matching, or analyzing collections of graphs in different ambient spaces. In this survey, we provide an overview of a diverse collection of distance measures that can be defined on the set of finite graphs immersed (and in some cases, embedded) in a metric space. For each of the distance measures, we recall their definitions and investigate which of the properties of a metric they satisfy. Furthermore we compare the distance measures based on these properties and discuss their computational complexity.

Chen, TsuWei ; Long, Stephen P (Ed.)Abstract Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but fail to measure the information embedded in shape comprehensively. To extract, compare and analyse this information embedded in a robust and concise way, we turn to topological data analysis (TDA), specifically the Euler characteristic transform. TDA measures shape comprehensively using mathematical representations based on algebraic topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the morphology of 3121 barley seeds scanned with Xray computed tomography (CT) technology at 127 μm resolution. The Euler characteristic transform measures shape by analysing topological features of an object at thresholds across a number of directional axes. A Kruskal–Wallis analysis of the information encoded by the topological signature reveals that the Euler characteristic transform picks up successfully the shape of the crease and bottom of the seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape descriptors can cluster them further based on their panicle. We then successfully train a support vector machine to classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone. This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehensively describe a multitude of ‘hidden’ shape nuances which are otherwise not detected.more » « less

Buchin, Kevin ; Colin de Verdi\` (Ed.)In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we "chop off" parts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter τ. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for 0 ≤ τ ≤ 2ε, where ε is the smoothing parameter. Then, for the restriction of τ ∈ [0,ε], we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope m ∈ [0,1]. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every m ∈ [0,1], which is a generalization of the original interleaving distance, which is the case m = 0. While the resulting metrics are not stable, we show that any pair of these for m, m' ∈ [0,1) are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs.more » « less

null (Ed.)Abstract We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space $${\mathbb {X}}$$ X equipped with a continuous function $$f: {\mathbb {X}}\rightarrow \mathbb {R}$$ f : X → R . We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line $$\mathbb {R}$$ R . We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on pointbased graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of $$({\mathbb {X}}, f)$$ ( X , f ) when it is applied to points randomly sampled from a probability density function concentrated on $$({\mathbb {X}}, f)$$ ( X , f ) . Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of $$({\mathbb {X}}, f)$$ ( X , f ) , a constructible $$\mathbb {R}$$ R space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of $$({\mathbb {X}},f)$$ ( X , f ) to the mapper of a superlevel set of a probability density function concentrated on $$({\mathbb {X}}, f)$$ ( X , f ) . Finally, building on the approach of Bobrowski et al. (Bernoulli 23 (1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the superlevel set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.more » « less

null (Ed.)The PageRank of a graph is a scalar function defined on the node set of the graph which encodes nodes centrality information of the graph. In this article we use the PageRank function along with persistent homology to obtain a scalable graph descriptor and utilize it to compare the similarities between graphs. For a given graph G(V, E), our descriptor can be computed in O(Eα(V)), where a is the inverse Ackermann function which makes it scalable and computable on massive graphs. We show the effectiveness of our method by utilizing it on multiple shape mesh datasets.more » « less

null (Ed.)Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. In an experimental setting, this transition could lead to incorrect data or damage to the entire experiment. While standard persistent homology has been used in this setting, it usually requires analyzing a collection of persistence diagrams, which in turn drives up the computational cost considerably. Using zigzag persistence, we can capture topological changes in the state space of the dynamical system in only one persistence diagram. Here, we present Bifurcations using ZigZag (BuZZ), a onestep method to study and detect bifurcations using zigzag persistence. The BuZZ method is successfully able to detect this type of behavior in two synthetic examples as well as an example dynamical system.more » « less