skip to main content

Search for: All records

Creators/Authors contains: "Murase, Kohta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Very-high-energy (VHE) photons around TeV energies from a gamma-ray burst (GRB) jet will play an essential role in the multimessenger era, with a fair fraction of the events being observed off-axis to the jet. We show that different energy photons (MeV and TeV photons in particular) arrive from different emission zones for off-axis observers even if the emission radius is the same. The location of the emission region depends on the jet structure of the surface brightness, and the structures are generally different at different energies, mainly due to the attenuation of VHE photons by electron–positron pair creation. This off-axis zone-shift effect does not justify the usual assumption of the one emission zone at a certain radius and also produces a time delay of VHE photons comparable to the GRB duration, which is crucial for future VHE observations, such as by the Cherenkov Telescope Array.

    more » « less
  2. Abstract

    Recent observations of high-energy neutrinos by IceCube and gamma rays by the Fermi Large Area Telescope (LAT) and the MAGIC telescope have suggested that neutrinos are produced in gamma-ray opaque environments in the vicinity of supermassive black holes. In this work, we present 20 MeV–1 TeV spectra of three Seyfert galaxies whose nuclei are predicted to be active in neutrinos, NGC 4151, NGC 4945, and the Circinus galaxy, using 14.4 yr of Fermi LAT data. In particular, we find evidence of sub-GeV excess emission that can be attributed to gamma rays from NGC 4945, as was also seen in NGC 1068. These spectral features are consistent with predictions of the magnetically powered corona model, and we argue that NGC 4945 is among the brightest neutrino active galaxies detectable for KM3Net and Baikal-GVD. On the other hand, in contrast to other reported results, we do not detect gamma rays from NGC 4151, which constrains neutrino emission from the accretion shock model. Future neutrino detectors such as IceCube-Gen2 and MeV gamma-ray telescopes such as AMEGO-X will be crucial for discriminating among the theoretical models.

    more » « less

    It is widely believed that the binary neutron star merger GW190425 produced a black hole promptly upon merger. Motivated by the potential association with the fast radio burst FRB 20190425A, which took place 2.5 h after the merger, we revisit the question of the outcome of GW190425 by means of numerical relativity simulations. We show that current laboratory and astrophysical constraints on the equation of state of dense matter do not rule out the formation of a long-lived remnant. However, the formation of a stable remnant would have produced a bright kilonova, in tension with upper limits by ZTF at the location and time of FRB 20190425A. Moreover, the ejecta would have been optically thick to radio emission for days to months, preventing a putative FRB from propagating out. The predicted dispersion measure is also several orders of magnitude larger than that observed for FRB 20190425A. Our results indicate that FRB 20190425A and GW190425 are not associated. However, we cannot completely rule out the formation of a long-lived remnant, due to the incomplete coverage of the relevant sky regions. More observations of GW190425-like events, including potential upper limit, have the potential to constrain nuclear physics. To this aim, it is important that follow-up observational campaigns of gravitational wave events are informed by the properties of the source, such as their chirp mass, and we urge the LIGO-Virgo-KAGRA collaboration to promptly release them publicly.

    more » « less
  4. Abstract

    High-energy neutrino andγ-ray emission has been observed from the Galactic plane, which may come from individual sources and/or diffuse cosmic rays. We evaluate the contribution of these two components through the multimessenger connection between neutrinos andγ-rays in hadronic interactions. We derive maximum fluxes of neutrino emission from the Galactic plane usingγ-ray catalogs, including 4FGL, HGPS, 3HWC, and 1LHAASO, and measurements of the Galactic diffuse emission by Tibet ASγand LHAASO. We find that the IceCube Galactic neutrino flux is larger than the contribution from all resolved sources when excluding promising leptonic sources such as pulsars, pulsar wind nebulae, and TeV halos. Our result indicates that the Galactic neutrino emission is likely dominated by the diffuse emission by the cosmic-ray sea and unresolved hadronicγ-ray sources. In addition, the IceCube flux is comparable to the sum of the flux of nonpulsar sources and the LHAASO diffuse emission especially above ∼30 TeV. This implies that the LHAASO diffuse emission may dominantly originate from hadronic interactions, either as the truly diffuse emission or unresolved hadronic emitters. Future observations of neutrino telescopes and air-showerγ-ray experiments in the Southern hemisphere are needed to accurately disentangle the source and diffuse emission of the Milky Way.

    more » « less
  5. Abstract

    Growing evidence from multiwavelength observations of extragalactic supernovae (SNe) has established the presence of dense circumstellar material in Type II SNe. Interaction between the SN ejecta and the circumstellar material should lead to diffusive shock acceleration of cosmic rays and associated high-energy emission. Observation of high-energy neutrinos along with the MeV neutrinos from SNe will provide unprecedented opportunities to understand unanswered questions in cosmic-ray and neutrino physics. We show that current and future neutrino detectors can identify high-energy neutrinos from an extragalactic SN in the neighborhood of the Milky Way. We present the prospects for detecting high-energy neutrino minibursts from SNe in known local galaxies, and demonstrate how the network of multiple high-energy neutrino detectors will extend the horizon for the identification of high-energy SN neutrinos. We also discuss high-energy neutrino emission from SN 2023ixf.

    more » « less
  6. Abstract

    Early-time light curves/spectra of some hydrogen-rich supernovae (SNe) provide solid evidence of the existence of confined, dense circumstellar matter (CSM) surrounding dying massive stars. We numerically and analytically study the radiative acceleration of CSM in such systems, where the radiation is mainly powered by the interaction between the SN ejecta and the CSM. We find that the acceleration of the unshocked dense CSM ahead of the shock is larger for massive and compact CSM, with velocities reaching up to ∼103km s−1for a CSM of order 0.1Mconfined within ∼1015cm. We show that the dependence of the acceleration on the CSM density helps us explain the diversity of the CSM velocity inferred from the early spectra of some Type II SNe. For explosions in even denser CSM, radiative acceleration can affect the dissipation of strong collisionless shocks formed after the shock breakout, which would affect early nonthermal emission expected from particle acceleration.

    more » « less

    Very high energy (VHE) γ-rays ($\gtrsim\!\! 0.1\rm ~TeV$) and neutrinos are crucial for identifying accelerators of ultra-high-energy cosmic rays (UHECRs), but this is challenging especially for UHECR nuclei. In this work, we develop a numerical code to solve the transport equation for UHECRs and their secondaries, where both nuclear and electromagnetic cascades are taken into account self-consistently, considering steady UHECR accelerators such as radio galaxies. In particular, we focus on Centaurus A, which has been proposed as one of the most promising UHECR sources in the local Universe. Motivated by observations of extended VHE γ-ray emission from its kiloparsec-scale jet by the High Energy Stereoscopic System (H.E.S.S.), we study interactions between UHECRs accelerated in the large-scale jet and various target photon fields including blazar-like beamed core emission, and present a quantitative study on VHE γ-ray signatures of UHECR nuclei, including the photodisintegration and Bethe–Heitler pair production processes. We show that VHE γ-rays from UHECR nuclei could be detected by the ground-based γ-ray telescopes given that the dominant composition of UHECRs consists of intermediate-mass (such as oxygen) nuclei.

    more » « less

    Magnetars have been considered as progenitors of magnetar giant flares (MGFs) and fast radio bursts (FRBs). We present detailed studies on afterglow emissions caused by bursts that occur in their wind nebulae and surrounding baryonic ejecta. In particular, following the bursts-in-bubble model, we analytically and numerically calculate spectra and light curves of such afterglow emission. We scan parameter space for the detectability of radio signals, and find that a burst with ∼1045 erg is detectable with the Very Large Array or other next-generation radio facilities. The detection of multiwavelength afterglow emission from MGFs and/or FRBs is of great significance for their localization and revealing their progenitors, and we estimate the number of detectable afterglow events.

    more » « less
  9. Abstract We investigate prospects for the detection of high-energy neutrinos produced in the prolonged jets of short gamma-ray bursts (sGRBs). The X-ray light curves of sGRBs show extended emission components lasting for 100–1000 s, which are considered to be produced by prolonged engine activity. Jets produced by such activity should interact with photons in the cocoon formed by the propagation of the jet inside the ejecta of neutron star mergers. We calculate neutrino emission from jets produced by prolonged engine activity, taking account of the interaction between photons provided from the cocoon and cosmic rays accelerated in the jets. We find that IceCube-Gen2, a future neutrino telescope, with second-generation gravitational-wave detectors will probably be able to observe neutrino signals associated with gravitational waves with around 10 years of operation, regardless of the assumed value of the Lorentz factor of the jets. Neutrino observations may enable us to constrain the dissipation region of the jets. We apply this model to GRB 211211A, a peculiar long GRB whose origin may be a binary neutron star merger. Our model predicts that IceCube is unlikely to detect any associated neutrinos, but a few similar events will be able to put a meaningful constraint on the physical quantities of the prolonged engine activities. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  10. Free, publicly-accessible full text available May 1, 2024