Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Greigite is a sensitive environmental indicator and occurs commonly in nature as magnetostatically interacting framboids. Until now only the magnetic response of isolated non-interacting greigite particles have been modelled micromagnetically. We present here hysteresis and first-order reversal curve (FORC) simulations for framboidal greigite (Fe3S4), and compare results to those for isolated particles of a similar size. We demonstrate that these magnetostatic interactions alter significantly the framboid FORC response compared to isolated particles, which makes the magnetic response similar to that of much larger (multidomain) grains. We also demonstrate that framboidal signals plot in different regions of a FORC diagram, which facilitates differentiation between framboidal and isolated grain signals. Given that large greigite crystals are rarely observed in microscopy studies of natural samples, we suggest that identification of multidomain-like FORC signals in samples known to contain abundant greigite could be interpreted as evidence for framboidal greigite.more » « less
-
null (Ed.)SUMMARY Quasi-linear field-dependence of remanence provides the foundation for sedimentary relative palaeointensity studies that have been widely used to understand past geomagnetic field behaviour and to date sedimentary sequences. Flocculation models are often called upon to explain this field dependence and the lower palaeomagnetic recording efficiency of sediments. Several recent studies have demonstrated that magnetic-mineral inclusions embedded within larger non-magnetic host silicates are abundant in sedimentary records, and that they can potentially provide another simple explanation for the quasi-linear field dependence. In order to understand how magnetic inclusion-rich detrital particles acquire sedimentary remanence, we carried out depositional remanent magnetization (DRM) experiments on controlled magnetic inclusion-bearing silicate particles (10–50 μm in size) prepared from gabbro and mid-ocean ridge basalt samples. Deposition experiments confirm that the studied large silicate host particles with magnetic mineral inclusions can acquire a DRM with accurate recording of declination. We observe a silicate size-dependent inclination shallowing, whereby larger silicate grains exhibit less inclination shallowing. The studied sized silicate samples do not have distinct populations of spherical or platy particles, so the observed size-dependence inclination shallowing could be explained by a ‘rolling ball’ model whereby larger silicate particles rotate less after depositional settling. We also observe non-linear field-dependent DRM acquisition in Earth-like magnetic fields with DRM behaviour depending strongly on silicate particle size, which could be explained by variable magnetic moments and silicate sizes. Our results provide direct evidence for a potentially widespread mechanism that could contribute to the observed variable recording efficiency and inclination shallowing of sedimentary remanences.more » « less
-
Paleomagnetic observations provide valuable evidence of the strength of magnetic fields present during evolution of the Solar System. Such information provides important constraints on physical processes responsible for rapid accretion of the protoplanetesimal disk. For this purpose, magnetic recordings must be stable and resist magnetic overprints from thermal events and viscous acquisition over many billions of years. A lack of comprehensive understanding of magnetic domain structures carrying remanence has, until now, prevented accurate estimates of the uncertainty of recording fidelity in almost all paleomagnetic samples. Recent computational advances allow detailed analysis of magnetic domain structures in iron particles as a function of grain morphology, size, and temperature. Our results show that uniformly magnetized equidimensional iron particles do not provide stable recordings, but instead larger grains containing single-vortex domain structures have very large remanences and high thermal stability—both increasing rapidly with grain size. We derive curves relating magnetic thermal and temporal stability demonstrating that cubes (>35 nm) and spheres (>55 nm) are likely capable of preserving magnetic recordings from the formation of the Solar System. Additionally, we model paleomagnetic demagnetization curves for a variety of grain size distributions and find that unless a sample is dominated by grains at the superparamagnetic size boundary, the majority of remanence will block at high temperatures ( ∼ 100 ° C of Curie point). We conclude that iron and kamacite (low Ni content FeNi) particles are almost ideal natural recorders, assuming that there is no chemical or magnetic alteration during sampling, storage, or laboratory measurement.more » « less
-
Abstract Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the magnetic mineralogy of natural samples. Theoretical estimates of long‐term stability of remanence were restricted to single‐domain (SD) states, but micromagnetic models have recently demonstrated that the so‐called single‐vortex (SV) domain structure can have even higher stability that SD grains. In larger grains (10 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element model to provide resolutions of many millions of elements allowing us, for the first time, to examine the evolution of magnetic structure from a uniform state, through the SV state up to the development of the domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain walls in grains as small as ∼3 μm with domain wall widths equal to that expected in large MD grains; we therefore put the SV to MD transition at ∼3 μm for magnetite and expect well‐defined, and stable, SV structures to be present until at least ∼1 μm when reducing the grain size. Reducing the size further shows critical dependence on the history of domain structures, particularly with SV states that transition through a so‐called “unstable zone” leading to the recently observed hard‐aligned SV states that proceed to unwind to SD yet remain hard aligned.more » « less
An official website of the United States government
