skip to main content


Search for: All records

Creators/Authors contains: "Nagda, Heena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Distributed data management systems use state Machine Replication (SMR) to provide fault tolerance. The SMR algorithm enables Byzantine Fault-Tolerant (BFT) protocols to guarantee safety and liveness despite the malicious failure of nodes. However, SMR does not prevent the adversarial manipulation of the order of transactions, where the order assigned by a malicious leader differs from the order in that transactions are received from clients. Whileorder-fairnesshas been recently studied in a few protocols, such protocols rely on synchronized clocks, suffer from liveness issues, or incur significant performance overhead. This paper presentsRashnu, a high-performance fair ordering protocol. Rashnu is motivated by the fact that fair ordering among two transactions is needed only when both transactions access a shared resource. Based on this observation, we define the notion ofdata-dependent order fairnesswhere replicas capture only the order of data-dependent transactions and the leader uses these orders to propose a dependency graph that represents fair ordering among transactions. Replicas then execute transactions using the dependency graph, resulting in the parallel execution of independent transactions. We implemented a prototype of Rashnu where our experimental evaluation reveals the low overhead of providing order-fairness in Rashnu.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively. 
    more » « less