skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nakamura, I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We report the first evidence for the h b ( 2 P ) ϒ ( 1 S ) η transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be B [ h b ( 2 P ) ϒ ( 1 S ) η ] = ( 7.1 3.2 + 3.7 ± 0.8 ) × 10 3 , which is noticeably smaller than expected. We also set upper limits on π 0 transitions of B [ h b ( 2 P ) ϒ ( 1 S ) π 0 ] < 1.8 × 10 3 , and B [ h b ( 1 P ) ϒ ( 1 S ) π 0 ] < 1.8 × 10 3 , at the 90% confidence level. These results are obtained with a 131.4 fb 1 data sample collected near the ϒ ( 5 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e collider. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. We perform an angular analysis of the B K * e + e decay for the dielectron mass squared, q 2 , range of 0.0008 1.1200 GeV 2 / c 4 using the full Belle dataset in the K * 0 K + π and K * + K S 0 π + channels, incorporating new methods of electron identification to improve the statistical power of the dataset. This analysis is sensitive to contributions from right-handed currents from physics beyond the Standard Model by constraining the Wilson coefficients C 7 ( ) . We perform a fit to the B K * e + e differential decay rate and measure the imaginary component of the transversality amplitude to be A T Im = 1.27 ± 0.52 ± 0.12 , and the K * transverse asymmetry to be A T ( 2 ) = 0.52 ± 0.53 ± 0.11 , with F L and A T Re fixed to the Standard Model values. The resulting constraints on the value of C 7 are consistent with the Standard Model within a 2 σ confidence interval. Published by the American Physical Society2024 
    more » « less
  4. We report the results of the first search for Standard Model and baryon-number-violating two-body decays of the neutral B mesons to Λ 0 and Ω c ( * ) 0 using 711 fb 1 of data collected at the ϒ ( 4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e collider. We observe no evidence of signal from any such decays and set 95% confidence-level upper limits on the products of B 0 and B ¯ 0 branching fractions for these two-body decays with B ( Ω c 0 π + Ω ) in the range between 9.5 × 10 8 and 31.2 × 10 8 . Published by the American Physical Society2024 
    more » « less
  5. We measure the complete set of angular coefficients J i for exclusive B ¯ D * ν ¯ decays ( = e , μ ). Our analysis uses the full 711 fb 1 Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the B ¯ D * transition and the Cabibbo-Kobayashi-Maskawa matrix element | V cb | . Using recent lattice QCD calculations for the hadronic form factors, we find | V cb | = ( 40.7 ± 0.7 ) × 10 3 using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter w and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024 
    more » « less
  6. We present a measurement of the branching fraction and fraction of longitudinal polarization of B 0 ρ + ρ decays, which have two π 0 ’s in the final state. We also measure time-dependent C P violation parameters for decays into longitudinally polarized ρ + ρ pairs. This analysis is based on a data sample containing ( 387 ± 6 ) × 10 6 ϒ ( 4 S ) mesons collected with the Belle II detector at the SuperKEKB asymmetric-energy e + e collider in 2019–2022. We obtain B ( B 0 ρ + ρ ) = ( 2.8 9 0.22 + 0.23 0.27 + 0.29 ) × 10 5 , f L = 0.92 1 0.025 + 0.024 0.015 + 0.017 , S = 0.26 ± 0.19 ± 0.08 , and C = 0.02 ± 0.1 2 0.05 + 0.06 , where the first uncertainties are statistical and the second are systematic. We use these results to perform an isospin analysis to constrain the Cabibbo-Kobayashi-Maskawa angle ϕ 2 and obtain two solutions; the result consistent with other Standard Model constraints is ϕ 2 = ( 92.6 4.7 + 4.5 ) ° . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. We report the results of the first search for B decays to the Ξ ¯ c 0 Λ ¯ c final state using 711 fb 1 of data collected at the ϒ ( 4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e collider. The results are interpreted in terms of both direct baryon-number-violating B decay and Ξ c 0 Ξ ¯ c 0 oscillations which follow the standard model decay B Ξ c 0 Λ ¯ c . We observe no evidence for baryon number violation and set the 95% confidence-level upper limits on the ratio of baryon-number-violating and standard model branching fractions B ( B Ξ ¯ c 0 Λ ¯ c ) / B ( B Ξ c 0 Λ ¯ c ) to be < 2.7 % and on the effective angular frequency of mixing ω in Ξ c 0 Ξ ¯ c 0 oscillations to be < 0.76 ps 1 (equivalent to τ mix > 1.3 ps ). Published by the American Physical Society2024 
    more » « less
  8. A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. We use a combined data set from the Belle and Belle II experiments, which studye+ecollisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D + K S 0 K π + π + decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. We present a comprehensive study of B 0 ω ω decays using 772 × 10 6 B B ¯ pairs collected with the Belle detector at the KEKB e + e collider. This process is a suppressed charmless decay into two vector mesons and can exhibit interesting polarization and C P violation. The decay is observed for the first time with a significance of 7.9 standard deviations. We measure a branching fraction B = ( 1.53 ± 0.29 ± 0.17 ) × 10 6 , a fraction of longitudinal polarization f L = 0.87 ± 0.13 ± 0.13 , and a time-integrated C P asymmetry A C P = 0.44 ± 0.43 ± 0.11 , where the first uncertainties listed are statistical and the second are systematic. This is the first observation of B 0 ω ω and the first measurements of f L and A C P for this decay. Published by the American Physical Society2024 
    more » « less
  10. A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+ecolliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ Ξ c + p K S 0 ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ Ξ c + Λ π + , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ Ξ c + Σ 0 π + are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ Ξ c + p K S 0 ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ Ξ c + Λ π + , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ Ξ c + Σ 0 π + relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ Ξ c + Ξ π + π + are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ B Ξ c + p K S 0 B Ξ c + Ξ π + π + = 2.47 ± 0.16 ± 0.07 % , B Ξ c + Λ π + B Ξ c + Ξ π + π + = 1.56 ± 0.14 ± 0.09 % , B Ξ c + Σ 0 π + B Ξ c + Ξ π + π + = 4.13 ± 0.26 ± 0.22 % . Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ B Ξ c + Ξ π + π + = 2.9 ± 1.3 % , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ B Ξ c + p K S 0 = 7.16 ± 0.46 ± 0.20 ± 3.21 × 10 4 , B Ξ c + Λ π + = 4.52 ± 0.41 ± 0.26 ± 2.03 × 10 4 , B Ξ c + Σ 0 π + = 1.20 ± 0.08 ± 0.07 ± 0.54 × 10 3 . The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ B Ξ c + Ξ π + π +
    more » « less
    Free, publicly-accessible full text available March 1, 2026