skip to main content

Search for: All records

Creators/Authors contains: "Nakata, Nori"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    As the high-frequency analogue to field-scale earthquakes, acoustic emissions (AEs) provide a valuable complement to study rock deformation mechanisms. During the load-stepping creep experiments with CO2-saturated water injection into a basaltic sample from Carbfix site in Iceland, 8791 AE events are detected by at least one of the seven piezoelectric sensors. Here, we apply a cross-correlation-based source imaging method, called geometric-mean reverse-time migration (GmRTM) to locate those AE events. Besides the attractive picking-free feature shared with other waveform-based methods (e.g. time-reversal imaging), GmRTM is advantageous in generating high-resolution source images with reduced imaging artefacts, especially for experiments with relatively sparse receivers. In general, the imaged AE locations are found to be scattered across the sample, suggesting a complicated fracture network rather than a well-defined major shear fracture plane, in agreement with X-ray computed tomography imaging results after retrieval of samples from the deformation apparatus. Clustering the events in space and time using the nearest-neighbour approach revealed a group of ‘repeaters’, which are spatially co-located over an elongated period of time and likely indicate crack, or shear band growth. Furthermore, we select 2196 AE events with high signal-to-noise-ratio (SNR) and conduct moment tensor estimation using the adjoint (backpropagated) strain tensor fields at the locations of AE sources. The resulting AE locations and focal mechanisms support our previously assertion that creep of basalt at the experimental conditions is accommodated dominantly by distributed microcracking.

    more » « less
  2. Abstract Ambient seismic recordings taken at broad locations across Ross Ice Shelf and a dense array near West Antarctic Ice Sheet (WAIS) Divide, Antarctica, show pervasive temporally variable resonance peaks associated with trapped seismic waves in near-surface firn layers. These resonance peaks feature splitting on the horizontal components, here interpreted as frequency-dependent anisotropy in the firn and underlying ice due to several overlapping mechanisms driven by ice flow. Frequency peak splitting magnitudes and fast/slow axes were systematically estimated at single stations using a novel algorithm and compared with good agreement with active source anisotropy measurements at WAIS Divide determined via active sources recorded on a 1 km circular array. The approach was further applied to the broad Ross Ice Shelf (RIS) array, where anisotropy axes were directly compared with visible surface features and ice shelf flow lines. The near-surface firn, depicted by anisotropy above 30 Hz, was shown to exhibit a novel plastic stretching mechanism of anisotropy, whereby the fast direction in snow aligns with accelerating ice shelf flow. 
    more » « less
  3. Abstract Firn is the pervasive surface material across Antarctica, and its structures reflect its formation and history in response to environmental perturbations. In addition to the role of firn in thermally isolating underlying glacial ice, it defines near-surface elastic and density structure and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the surface. We investigate high-frequency seismic data collected with an array of seismographs deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019. Cross-correlations of anthropogenic noise originating from the approximately 5 km-distant camp were constructed using a 1 km-diameter circular array of 22 seismographs. We distinguish three Rayleigh (elastic surface) wave modes at frequencies up to 50 Hz that exhibit systematic spatially varying particle motion characteristics. The horizontal-to-vertical ratio for the second mode shows a spatial pattern of peak frequencies that matches particle motion transitions for both the fundamental and second Rayleigh modes. This pattern is further evident in the appearance of narrow band spectral peaks. We find that shallow lateral structural variations are consistent with these observations, and model spectral peaks as Rayleigh wave amplifications within similarly scaled shallow basin-like structures delineated by the strong velocity and density gradients typical of Antarctic firn. 
    more » « less