Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments.
more »
« less
High‐Resolution Characterization of the Firn Layer Near the West Antarctic Ice Sheet Divide Camp With Active and Passive Seismic Data
Abstract We construct a high‐resolution shear‐wave velocity (VS) model for the uppermost 100 m using ambient noise tomography near the West Antarctic Ice Sheet Divide camp. This is achieved via joint inversion of Rayleigh wave phase velocity and H/V ratio, whose signal‐to‐noise ratios are boosted by three‐station interferometry and phase‐matched filtering, respectively. The VSshows a steep increase (0.04–0.9 km/s) in the top 5 m, with sharp interfaces at ∼8–12 m, followed by a gradual increase (1.2–1.8 km/s) between 10 and 45 m depth, and to 2 km/s at ∼65 m. The compressional‐wave velocity and empirically‐obtained density profile compares well with the results from Herglotz–Wiechert inversion of diving waves in active‐source shot experiments and ice core analysis. Our approach offers a tool to characterize high‐resolution properties of the firn and shallow ice column, which helps to infer the physical properties of deeper ice sheets, thereby contributes to improved understanding of Earth's cryosphere.
more »
« less
- Award ID(s):
- 1739027
- PAR ID:
- 10614130
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 12
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity.more » « less
-
Abstract The Alaska Peninsula has a long history of plate subduction with along‐arc variations in volcanic eruption styles and geochemistry. However, the sub‐arc melting processes that feed these volcanoes are unclear. The Alaska slab morphology below 200 km depth remains debated due to limited seismic data and thus low tomography resolution in this region. Here we utilize the newly available regional and teleseismic data to build 3‐D high‐resolutionVPandVSmodels to 660 km depth. We find that the high‐velocity Pacific Plate subducts to the bottom of the mantle transition zone (MTZ) with complex deformation and gaps. In the southwest, we observe a wide gap in the high‐velocity slab at 200–500 km depths. Toward the northeast, the slab becomes more continuous extending to the MTZ with a few holes below 200 km. We interpret these gaps as a slab tear that coincides with the subducted ancient Kula‐Pacific Ridge. We also invert for 3‐DVPandVP/VSmodels to 200 km depth with higher resolution and find strong along‐strike changes in slab dehydration and sub‐arc melting, indicated by lowVPand highVP/VSanomalies. Slab dehydration and sub‐arc melting are most extensive below the Pavlof and Shumagin segments in the southwest, becoming limited below the Chignik and Chirikof segments in the northeast, and extensive again beneath the Kodiak segment further to the northeast. We propose that the variations of slab hydration at the outer rise significantly influence slab dehydration at greater depths and further control sub‐arc melting beneath the Alaska Peninsula.more » « less
-
Abstract The San Fernando Valley (SFV), a densely populated region in Southern California, has high earthquake hazard due to a complex network of active faults and the amplifying effects of the sedimentary basin. Since the devastating 1994 Mw 6.7 Northridge earthquake, numerous studies have examined its structure using various geological and geophysical datasets. However, current seismic velocity models still lack the resolution to accurately image the near-surface velocity structure and concealed or blind faults, which are critical for high-frequency wavefield simulations and earthquake hazard modeling. To address these challenges, we develop a 3D high-resolution shear-wave velocity model for the SFV using ambient noise data from a dense array of 140 seismic nodes and 10 Southern California Seismic Network stations. We also invert gravity data to map the basin geometry and integrate horizontal-to-vertical spectral ratios and aeromagnetic data to constrain interfaces and map major geological structures. With a lateral resolution of 250 m near the basin center, our model reveals previously unresolved geological features, including the detailed geometry of the basin and previously unmapped structure of faults at depth. The basin deepens from the Santa Monica Mountains in the south to approximately 4 km near its center and 7 km in the Sylmar sub-basin at the basin’s northern margin. Strong velocity contrasts are observed across major faults, at the basin edges, and in the basin’s upper 500 m, for which we measure velocities as low as 200 m/s. Our high-resolution model will enhance ground-motion simulations and earthquake hazard assessments for the SFV and has implications for other urban areas with high seismic risk.more » « less
-
Abstract The Indo‐Burman subduction zone represents a global endmember for extreme sediment accretion and is a region characterized by ambiguous tectonic structure. The recent collection of broadband seismic data across the Indo‐Burman accretionary margin as part of the Bangladesh‐India‐Myanmar Array (BIMA) experiment provides an opportunity to investigate the subsurface velocity structure across the incoming plate of an endmember subduction system. We construct a three‐dimensional model for seismic shear velocity using a joint inversion of surface‐ and scattered‐wave constraints. Rayleigh‐wave phase velocities measured from ambient‐noise (12–25 s) and teleseismic earthquakes (20–80 s) constrain absolute shear velocities, while we constrain the locations of and relative contrasts across significant discontinuities in the subsurface using observations from scattered‐wave imaging. From the resulting inversion, we observe two model classes that characterize the evolution of consolidation within the markedly slow uppermost sediments and metasediments along a predominantly southwest‐to‐northeast trend. We interpret variations in deeper seismic structure under two proposed scenarios: (a) a Moho of ∼21–26 km depth underlying a package of metasediments and a thinned basement component, with a slow mantle lithosphere (4.2 km/s) that may contain retained melt from the onset of India‐Antarctica seafloor spreading; or (b) a Moho of ∼51–59 km depth underlying a package of metasediments, basement, and a thick slug of mafic material, which may correspond to significant Kerguelen‐plume‐related underplating. By combining constraints from highly resolved phase‐velocity estimates and scattered‐wave images, we successfully characterize the lateral transitions across the Indo‐Burman forearc margin.more » « less
An official website of the United States government
