- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Nam, Seungsoo (4)
-
Sim, Eunji (4)
-
Song, Suhwan (2)
-
and Burke, Kieron (2)
-
Burke, Kieron (1)
-
Cho, Eunbyol (1)
-
McCarty, Ryan J. (1)
-
Park, Hansol (1)
-
Yu, Hayoung (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nam, Seungsoo ; Cho, Eunbyol ; Sim, Eunji ; and Burke, Kieron ( , The journal of physical chemistry letters)Most torsional barriers are predicted with high accuracies (about 1 kJ/mol) by standard semilocal functionals, but a small subset was found to have much larger errors. We created a database of almost 300 carbon–carbon torsional barriers, including 12 poorly behaved barriers, that stem from the Y═C—X group, where Y is O or S and X is a halide. Functionals with enhanced exchange mixing (about 50%) worked well for all barriers. We found that poor actors have delocalization errors caused by hyperconjugation. These problematic calculations are density-sensitive (i.e., DFT predictions change noticeably with the density), and using HF densities (HF-DFT) fixes these issues. For example, conventional B3LYP performs as accurately as exchange-enhanced functionals if the HF density is used. For long-chain conjugated molecules, HF-DFT can be much better than exchange-enhanced functionals. We suggest that HF-PBE0 has the best overall performance.more » « less
-
Nam, Seungsoo ; Song, Suhwan ; Sim, Eunji ; and Burke, Kieron ( , Journal of chemical theory and computation)Kohn–Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree–Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl– radical, illustrate just how accurate HF-DFT is.more » « less
-
Nam, Seungsoo ; McCarty, Ryan J. ; Park, Hansol ; Sim, Eunji ( , The Journal of Chemical Physics)