skip to main content

Search for: All records

Creators/Authors contains: "Nardin, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection. 
    more » « less
  2. Abstract

    Salt marshes are dynamic systems able to laterally expand, contract, and vertically accrete in response to sea level rise. Here, we present the grand challenges that need to be addressed to fully characterize marsh morphodynamics. The review focuses on physical processes and quantitative models. Without predictive models, it is impossible to determine the future marsh evolution under accelerated sea level rise. In these models, one of the challenges is to resolve both horizontal and vertical dynamics within the same framework. Vertically, the marsh has to accumulate enough material to contrast rising water levels. Horizontally, marsh erosion at the ocean side must be compensated by landward expansion in forests, lawns, and agricultural fields. The dynamics of the marsh‐upland boundary are still not fully understood and will require more research in the upcoming years. The complexity of marsh vegetation is seldom captured in predictive models of marsh evolution. More research is needed to understand the effects of each species or species assemblages on hydrodynamics and sediment transport. Here, we further advocate that a sediment budget resolving all sediment fluxes in a marsh complex is the most important metric of marsh resilience. Characterization of these fluxes will enable to connect salt marshes to other landforms and to unravel feedbacks controlling the evolution of the entire coastal system. Current models of marsh evolution rely on sparse data sets collected at few locations. Novel remote sensing techniques will provide high‐resolution spatial data that will inform a new generation of computer models.

    more » « less
  3. Abstract

    Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.

    more » « less
  4. Abstract

    Over the last several decades, the study of Earth surface processes has progressed from a descriptive science to an increasingly quantitative one due to advances in theoretical, experimental, and computational geosciences. The importance of geomorphic forecasts has never been greater, as technological development and global climate change threaten to reshape the landscapes that support human societies and natural ecosystems. Here we explore best practices for developing socially relevant forecasts of Earth surface change, a goal we are calling “earthcasting”. We suggest that earthcasts have the following features: they focus on temporal (∼1–∼100 years) and spatial (∼1 m–∼10 km) scales relevant to planning; they are designed with direct involvement of stakeholders and public beneficiaries through the evaluation of the socioeconomic impacts of geomorphic processes; and they generate forecasts that are clearly stated, testable, and include quantitative uncertainties. Earthcasts bridge the gap between Earth surface researchers and decision‐makers, stakeholders, researchers from other disciplines, and the general public. We investigate the defining features of earthcasts and evaluate some specific examples. This paper builds on previous studies of prediction in geomorphology by recommending a roadmap for (a) generating earthcasts, especially those based on modeling; (b) transforming a subset of geomorphic research into earthcasts; and (c) communicating earthcasts beyond the geomorphology research community. Earthcasting exemplifies the social benefit of geomorphology research, and it calls for renewed research efforts toward further understanding the limits of predictability of Earth surface systems and processes, and the uncertainties associated with modeling geomorphic processes and their impacts.

    more » « less
  5. Abstract

    It is widely recognized that waves inhibit river mouth progradation and reduce the avulsion timescale of deltaic channels. Nevertheless, those effects may not apply to downdrift‐deflected channels. In this study, we developed a coupled model to explore the effects of wave climate asymmetry and alongshore sediment bypassing on shoreline‐channel morphodynamics. The shoreline position and channel trajectory are simulated using a “shoreline” module which drives the evolution of the river profile in a “channel” module by updating the position of river mouth boundary, whereas the channel module provides the sediment load to river mouth for the “shoreline” module. The numerical results show that regional alongshore sediment transport driven by an asymmetric wave climate can enhance the progradation of deltaic channels if sediment bypassing of the river mouth is limited, which is different from the common assumption that waves inhibit delta progradation. As such, waves can have a trade‐off effect on river mouth progradation that can further influence riverbed aggradation and channel avulsion. This trade‐off effect of waves is dictated by the net alongshore sediment transport, sediment bypassing at the river mouth, and wave diffusivity. Based on the numerical results, we further propose a dimensionless parameter that includes fluvial and alongshore sediment supply relative to wave diffusivity to predict the progradation and aggradation rates and avulsion timescale of deltaic channels. The improved understanding of progradation, aggradation, and avulsion timescale of deltaic channels has important implications for engineering and predicting deltaic wetland creation, particularly under changing water and sediment input to deltaic systems.

    more » « less