Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Social media has revolutionized communication, allowing people worldwide to connect and interact instantly. However, it has also led to increases in cyberbullying, which poses a significant threat to children and adolescents globally, affecting their mental health and well-being. It is critical to accurately detect the roles of individuals involved in cyberbullying incidents to effectively address the issue on a large scale. This study explores the use of machine learning models to detect the roles involved in cyberbullying interactions. After examining the AMiCA dataset and addressing class imbalance issues, we evaluate the performance of various models built with four underlying LLMs (i.e. BERT, RoBERTa, T5, and GPT-2) for role detection. Our analysis shows that oversampling techniques help improve model performance. The best model, a fine-tuned RoBERTa using oversampled data, achieved an overall F1 score of 83.5%, increasing to 89.3% after applying a prediction threshold. The top-2 F1 score without thresholding was 95.7%. Our method outperforms previously proposed models. After investigating the per-class model performance and confidence scores, we show that the models perform well in classes with more samples and less contextual confusion (e.g. Bystander Other), but struggle with classes with fewer samples (e.g. Bystander Assistant) and more contextual ambiguity (e.g. Harasser and Victim). This work highlights current strengths and limitations in the development of accurate models with limited data and complex scenarios.more » « less
-
With the increasing need for more reactive services, and the need to process large amounts of IoT data, edge clouds are emerging to enable applications to be run close to the users and/or devices. Following the trend in hyperscale clouds, ap- plications are trending toward a microservices architecture where the application is decomposed into smaller pieces that can each run in its own container and communicate with each other over a network through well defined APIs. This improves the development effort and deployability, but also introduces inefficiencies in communication. In this paper, we rethink the communication model, and introduce the ability to create shared memory channels between containers support- ing both a pub/sub model and streaming model. Our approach is not only applicable to the edge clouds but also beneficial in core cloud environments. Local communication is made more efficient, and remote communication is efficiently supported through synchronizing shared memory regions via RDMA.more » « less
-
With the increasing need for more reactive services, and the need to process large amounts of IoT data, edge clouds are emerging to enable applications to be run close to the users and/or devices. Following the trend in hyperscale clouds, applications are trending toward a microservices architecture where the application is decomposed into smaller pieces that can each run in its own container and communicate with each other over a network through well defined APIs. This improves the development effort and deployability, but also introduces inefficiencies in communication. In this paper, we rethink the communication model, and introduce the ability to create shared memory channels between containers supporting both a pub/sub model and streaming model. Our approach is not only applicable to the edge clouds but also beneficial in core cloud environments. Local communication is made more efficient, and remote communication is efficiently supported through synchronizing shared memory regions via RDMA.more » « less
An official website of the United States government

Full Text Available