skip to main content


Search for: All records

Creators/Authors contains: "Nazir, Nawaf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a market-based optimization framework wherein Aggregators can compete for nodal capacity across a distribution feeder and guarantee that allocated flexible capacity cannot cause overloads or congestion. This mechanism, thus, allows Aggregators with allocated capacity to pursue a number of services at the whole-sale market level to maximize revenue of flexible resources. Based on Aggregator bids of capacity (MW) and network access price ($/MW), the distribution system operator (DSO) formulates an optimization problem that prioritizes capacity to the different Aggregators across the network while implicitly considering AC network constraints. This grid-aware allocation is obtained by incorporating a con- vex inner approximation into the optimization framework that prioritizes hosting capacity to different Aggregators. We adapt concepts from transmission-level capacity market clearing, utility demand charges, and Internet-like bandwidth allocation rules to distribution system operations by incorporating nodal voltage and transformer constraints into the optimization framework. Simulation based results on IEEE distribution networks showcase the effectiveness of the approach. 
    more » « less
  2. A wind farm can provide reactive power at sub-transmission and transmission buses in order to support and improve voltage profiles. It is common for the reactive power capability of a wind farm to be evaluated as the sum of the individual turbine ratings. However, such an assessment does not take into account losses over the collector network, nor the voltage constraints imposed by the turbines and network. In contrast, the paper presents a method for determining the range of reactive power support that each turbine can provide whilst guaranteeing satisfaction of voltage constraints. This is achieved by constructing convex inner approximations of the non-convex set of admissible reactive power injections. We present theoretical analysis that supports the constraint satisfaction guarantees. An example illustrates the effectiveness of the algorithm and provides a comparison with a fully decentralized approach to controlling wind farm reactive power. Such approaches have the potential to improve the design and operation of wind farm collector networks, reducing the need for additional costly reactive power resources. 
    more » « less
  3. Dispatching a large fleet of distributed energy resources (DERs) in response to wholesale energy market or regional grid signals requires solving a challenging disaggregation problem when the DERs are located within a distribution network. This manuscript presents a computationally tractable convex inner approximation for the optimal power flow (OPF) problem that characterizes a feeders aggregate DERs hosting capacity and enables a realtime, grid-aware dispatch of DERs for radial distribution networks. The inner approximation is derived by considering convex envelopes on the nonlinear terms in the AC power flow equations. The resulting convex formulation is then used to derive provable nodal injection limits, such that any combination of DER dispatches within their respective nodal limits is guaranteed to be AC admissible. These nodal injection limits are then used to construct a realtime, open-loop control policy for dispatching DERs at each location in the network to collectively deliver grid services. The IEEE-37 distribution network is used to validate the technical results and highlight various use-cases. 
    more » « less
  4. The non-convex complementarity constraints present a fundamental computational challenge in energy constrained optimization problems. In this work, we present a new, linear, and robust battery optimization formulation that sidesteps the need for battery complementarity constraints and integers and prove analytically that the formulation guarantees that all energy constraints are satisfied which ensures that the optimized battery dispatch is physically realizable. In addition, we bound the worst-case model mismatch and discuss conservativeness. Simulation results further illustrate the effectiveness of this approach. 
    more » « less
  5. null (Ed.)
    Renewable portfolio standards are targeting high levels of variable solar photovoltaics (PV) in electric distribution systems, which makes reliability more challenging to maintain for distribution system operators (DSOs). Distributed energy resources (DERs), including smart, connected appliances and PV inverters, represent responsive grid resources that can provide flexibility to support the DSO in actively managing their networks to facilitate reliability under extreme levels of solar PV. This flexibility can also be used to optimize system operations with respect to economic signals from wholesale energy and ancillary service markets. Here, we present a novel hierarchical scheme that actively controls behind-the-meter DERs to reliably manage each unbalanced distribution feeder and exploits the available flexibility to ensure reliable operation and economically optimizes the entire distribution network. Each layer of the scheme employs advanced optimization methods at different timescales to ensure that the system operates within both grid and device limits. The hierarchy is validated in a large-scale realistic simulation based on data from the industry. Simulation results show that coordination of flexibility improves both system reliability and economics, and enables greater penetration of solar PV. Discussion is also provided on the practical viability of the required communications and controls to implement the presented scheme within a large DSO. 
    more » « less