skip to main content


Search for: All records

Creators/Authors contains: "Newport, Calvin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The best known solutions for k-message broadcast in dynamic networks of size n require Ω(nk) rounds. In this paper, we see if these bounds can be improved by smoothed analysis. To do so, we study perhaps the most natural randomized algorithm for disseminating tokens in this setting: at every time step, choose a token to broadcast randomly from the set of tokens you know. We show that with even a small amount of smoothing (i.e., one random edge added per round), this natural strategy solves k-message broadcast in Õ(n+k³) rounds, with high probability, beating the best known bounds for k = o(√n) and matching the Ω(n+k) lower bound for static networks for k = O(n^{1/3}) (ignoring logarithmic factors). In fact, the main result we show is even stronger and more general: given 𝓁-smoothing (i.e., 𝓁 random edges added per round), this simple strategy terminates in O(kn^{2/3}log^{1/3}(n)𝓁^{-1/3}) rounds. We then prove this analysis close to tight with an almost-matching lower bound. To better understand the impact of smoothing on information spreading, we next turn our attention to static networks, proving a tight bound of Õ(k√n) rounds to solve k-message broadcast, which is better than what our strategy can achieve in the dynamic setting. This confirms the intuition that although smoothed analysis reduces the difficulties induced by changing graph structures, it does not eliminate them altogether. Finally, we apply tools developed to support our smoothed analysis to prove an optimal result for k-message broadcast in so-called well-mixed networks in the absence of smoothing. By comparing this result to an existing lower bound for well-mixed networks, we establish a formal separation between oblivious and strongly adaptive adversaries with respect to well-mixed token spreading, partially resolving an open question on the impact of adversary strength on the k-message broadcast problem. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms work for any number of failures, require no advance knowledge of the network participants or network size, and guarantee termination with high probability after a number of broadcasts that are polynomial in the network size. Our first algorithm satisfies the standard agreement property, while our second trades a faster termination guarantee in exchange for a looser agreement property in which most nodes agree on the same value. These are the first known fault-tolerant consensus algorithms for this model. In addition to our main upper bound results, we explore the gap between the abstract MAC layer and the standard asynchronous message passing model by proving fault-tolerant consensus is impossible in the latter in the absence of information regarding the network participants, even if we assume no faults, allow randomized solutions, and provide the algorithm a constant-factor approximation of the network size. 
    more » « less
  8. In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 0 bits to their neighbors in each round, and the case where nodes can advertise 1 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system. We prove that our existing algorithms for dynamic network topologies and a single advertising bit solve this relaxed version up to a polynomial factor faster (in network size) for many parameters. These are the first known gossip results for the mobile telephone model, and they significantly expand our understanding of how to communicate and coordinate in this increasingly relevant setting. 
    more » « less