skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ngo, Hieu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 15, 2025
  2. Occlusion is a critical problem in the Autonomous Driving System. Solving this problem requires robust collaboration among autonomous vehicles traveling on the same roads. However, transferring the entirety of raw sensors' data among autonomous vehicles is expensive and can cause a delay in communication. This paper proposes a method called Realtime Collaborative Vehicular Communication based on Bird's-Eye-View (BEV) map. The BEV map holds the accurate depth information from the point cloud image while its 2D representation enables the method to use a novel and well-trained image-based backbone network. Most importantly, we encode the object detection results into the BEV representation to reduce the volume of data transmission and make real-time collaboration between autonomous vehicles possible. The output of this process, the BEV map, can also be used as direct input to most route planning modules. Numerical results show that this novel method can increase the accuracy of object detection by cross-verifying the results from multiple points of view. Thus, in the process, this new method also reduces the object detection challenges that stem from occlusion and partial occlusion. Additionally, different from many existing methods, this new method significantly reduces the data needed for transfer between vehicles, achieving a speed of 21.92 Hz for both the object detection process and the data transmission process, which is sufficiently fast for a real-time system. 
    more » « less
  3. Digital technology has huge potentials in transforming clinical trial research. One common issue in digital clinical trials for long-term behavioral treatments is incomplete longitudinal data, as subjects’ behavior changes over time. In this paper, we aim to improve the fuzzy clustering accuracy and stability of digital clinical trials by intelligently searching for the optimal fuzzifier, which is the key to identify the optimal number of overlapped clusters for incomplete longitudinal data. Our findings showed that integrating optimal fuzzifier searching with cluster validation can streamline the clustering process, thus enabling the intelligent fuzzy clustering procedure. 
    more » « less
  4. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less
  5. null (Ed.)
    With 5G networks on the rise, it becomes more and more important to grant researchers access to tools that allow for development and experimentation in the field of 5G transmission. Healthcare can benefit greatly from these developments. In this paper a real-time transmission technique is described and tested that, if implemented, allows wearable devices to transmit multiple streams of data on various frequencies. These tests will be used to explain how this presented platform works, what drawbacks and benefits exist with the proposed scheme, and how to further develop the solution of real-time transmission of sensitive data, such as substance-use data, at higher frequencies. 
    more » « less