skip to main content

Title: Beamforming and Scalable Image Processing in Vehicle-to-Vehicle Networks
Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for more » only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Signal Processing Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. Collaborative perception enables autonomous driving vehicles to share sensing or perception data via broadcast-based vehicle-to-everything (V2X) communication technologies such as Cellular-V2X (C-V2X), hoping to enable accurate perception in face of inaccurate perception results by each individual vehicle. Nevertheless, the V2X communication channel remains a significant bottleneck to the performance and usefulness of collaborative perception due to limited bandwidth and ad hoc communication scheduling. In this paper, we explore challenges and design choices for V2X-based collaborative perception, and propose an architecture that lever-ages the power of edge computing such as road-side units for central communication scheduling. Using NS-3 simulations, we show the performance gap between distributed and centralized C-V2X scheduling in terms of achievable throughput and communication efficiency, and explore scenarios where edge assistance is beneficial or even necessary for collaborative perception.
  2. Connected Autonomous Vehicular (CAV) platoon refers to a group of vehicles that coordinate their movements and operate as a single unit. The vehicle at the head acts as the leader of the platoon and determines the course of the vehicles following it. The follower vehicles utilize Vehicle-to-Vehicle (V2V) communication and automated driving support systems to automatically maintain a small fixed distance between each other. Reliance on V2V communication exposes platoons to several possible malicious attacks which can compromise the safety, stability, and efficiency of the vehicles. We present a novel distributed resiliency architecture, RePLACe for CAV platoon vehicles to defend against adversaries corrupting V2V communication reporting preceding vehicle position. RePLACe is unique in that it can provide real-time defense against a spectrum of communication attacks. RePLACe provides systematic augmentation of a platoon controller architecture with real-time detection and mitigation functionality using machine learning. Unlike computationally intensive cryptographic solutions RePLACe accounts for the limited computation capabilities provided by automotive platforms as well as the real-time requirements of the application. Furthermore, unlike control-theoretic approaches, the same framework works against the broad spectrum of attacks. We also develop a systematic approach for evaluation of resiliency of CAV applications against V2V attacks. We performmore »extensive experimental evaluation to demonstrate the efficacy of RePLACe.« less
  3. By enabling autonomous vehicles (AVs) to share data while driving, 5G vehicular communications allow AVs to collaborate on solving common autonomous driving tasks. AVs often rely on machine learning models to perform such tasks; as such, collaboration requires leveraging vehicular communications to improve the performance of machine learning algorithms. This paper provides a comprehensive literature survey of the intersection between machine learning for autonomous driving and vehicular communications. Throughout the paper, we explain how vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communications are used to improve machine learning in AVs, answering five major questions regarding such systems. These questions include: 1) How can AVs effectively transmit data wirelessly on the road? 2) How do AVs manage the shared data? 3) How do AVs use shared data to improve their perception of the environment? 4) How do AVs use shared data to drive more safely and efficiently? and 5) How can AVs protect the privacy of shared data and prevent cyberattacks? We also summarize data sources that may support research in this area and discuss the future research potential surrounding these five questions.
  4. Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keepingmore »performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately.« less
  5. Mobile edge and vehicle-based depth sending and real-time point cloud communication is an essential subtask enabling autonomous driving. In this paper, we propose a framework for point cloud multicast in VANETs using vehicle to infrastructure (V2I) communication. We employ a scalable Binary Tree embedded Quad Tree (BTQT) point cloud source encoder with bitrate elasticity to match with an adaptive random network coding (ARNC) to multicast different layers to the vehicles. The scalability of our BTQT encoded point cloud provides a trade-off in the received voxel size/quality vs channel condition whereas the ARNC helps maximize the throughput under a hard delay constraint. The solution is tested with the outdoor 3D point cloud dataset from MERL for autonomous driving. The users with good channel conditions receive a near lossless point cloud whereas users with bad channel conditions are still able to receive at least the base layer point cloud.