skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nguyen, Viet Anh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Problem definition: Data analytics models and machine learning algorithms are increasingly deployed to support consequential decision-making processes, from deciding which applicants will receive job offers and loans to university enrollments and medical interventions. However, recent studies show these models may unintentionally amplify human bias and yield significant unfavorable decisions to specific groups. Methodology/results: We propose a distributionally robust classification model with a fairness constraint that encourages the classifier to be fair in the equality of opportunity criterion. We use a type-[Formula: see text] Wasserstein ambiguity set centered at the empirical distribution to represent distributional uncertainty and derive a conservative reformulation for the worst-case equal opportunity unfairness measure. We show that the model is equivalent to a mixed binary conic optimization problem, which standard off-the-shelf solvers can solve. We propose a convex, hinge-loss-based model for large problem instances whose reformulation does not incur binary variables to improve scalability. Moreover, we also consider the distributionally robust learning problem with a generic ground transportation cost to hedge against the label and sensitive attribute uncertainties. We numerically examine the performance of our proposed models on five real-world data sets related to individual analysis. Compared with the state-of-the-art methods, our proposed approaches significantly improve fairness with negligible loss of predictive accuracy in the testing data set. Managerial implications: Our paper raises awareness that bias may arise when predictive models are used in service and operations. It generally comes from human bias, for example, imbalanced data collection or low sample sizes, and is further amplified by algorithms. Incorporating fairness constraints and the distributionally robust optimization (DRO) scheme is a powerful way to alleviate algorithmic biases.

    Funding: This work was supported by the National Science Foundation [Grants 2342505 and 2343869] and the Chinese University of Hong Kong [Grant 4055191].

    Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0230 .

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. This paper shows that dropout training in generalized linear models is the minimax solution of a two-player, zero-sum game where an adversarial nature corrupts a statistician's covariates using a multiplicative nonparametric errors-in-variables model. In this game, nature's least favorable distribution is dropout noise, where nature independently deletes entries of the covariate vector with some fixed probability δ. This result implies that dropout training indeed provides out-of-sample expected loss guarantees for distributions that arise from multiplicative perturbations of in-sample data. The paper makes a concrete recommendation on how to select the tuning parameter δ. The paper also provides a novel, parallelizable, unbiased multi-level Monte Carlo algorithm to speed-up the implementation of dropout training. Our algorithm has a much smaller computational cost compared to the naive implementation of dropout, provided the number of data points is much smaller than the dimension of the covariate vector. 
    more » « less
  4. Distributionally robust optimization (DRO) has been shown to offer a principled way to regularize learning models. In this paper, we find that Tikhonov regularization is distributionally robust in an optimal transport sense (i.e. if an adversary chooses distributions in a suitable optimal transport neighborhood of the empirical measure), provided that suitable martingale constraints are also imposed. Further, we introduce a relaxation of the martingale constraints which not only provide a unified viewpoint to a class of existing robust methods but also lead to new regularization tools. To realize these novel tools, provably efficient computational algorithms are proposed. As a byproduct, the strong duality theorem proved in this paper can be potentially applied to other problems of independent interest. 
    more » « less
  5. https://youtu.be/79Py8KU4_k0 (Ed.)
    We consider statistical methods that invoke a min-max distributionally robust formulation to extract good out-of-sample performance in data-driven optimization and learning problems. Acknowledging the distributional uncertainty in learning from limited samples, the min-max formulations introduce an adversarial inner player to explore unseen covariate data. The resulting distributionally robust optimization (DRO) formulations, which include Wasserstein DRO formulations (our main focus), are specified using optimal transportation phenomena. Upon describing how these infinite-dimensional min-max problems can be approached via a finite-dimensional dual reformulation, this tutorial moves into its main component, namely, explaining a generic recipe for optimally selecting the size of the adversary’s budget. This is achieved by studying the limit behavior of an optimal transport projection formulation arising from an inquiry on the smallest confidence region that includes the unknown population risk minimizer. Incidentally, this systematic prescription coincides with those in specific examples in high-dimensional statistics and results in error bounds that are free from the curse of dimensions. Equipped with this prescription, we present a central limit theorem for the DRO estimator and provide a recipe for constructing compatible confidence regions that are useful for uncertainty quantification. The rest of the tutorial is devoted to insights into the nature of the optimizers selected by the min-max formulations and additional applications of optimal transport projections. 
    more » « less
  6. Meila, Marina and (Ed.)
    InProceedings{pmlr-v139-si21a, title = {}, author = {}, booktitle = {}, pages = {9649--9659}, We have developed a statistical testing framework to detect if a given machine learning classifier fails to satisfy a wide range of group fairness notions. Our test is a flexible, interpretable, and statistically rigorous tool for auditing whether exhibited biases are intrinsic to the algorithm or simply due to the randomness in the data. The statistical challenges, which may arise from multiple impact criteria that define group fairness and which are discontinuous on model parameters, are conveniently tackled by projecting the empirical measure to the set of group-fair probability models using optimal transport. This statistic is efficiently computed using linear programming, and its asymptotic distribution is explicitly obtained. The proposed framework can also be used to test for composite fairness hypotheses and fairness with multiple sensitive attributes. The optimal transport testing formulation improves interpretability by characterizing the minimal covariate perturbations that eliminate the bias observed in the audit. 
    more » « less
  7. Meila, Marina and (Ed.)
    Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator experts that are robust with regard to moment conditions. When these moment conditions are specified using Kullback-Leibler or Wasserstein-type divergences, we can find the robust estimators efficiently using convex optimization. We use the Bernstein online aggregation algorithm on the proposed family of robust experts to generate predictions for the sequential stream of target test samples. Numerical experiments on real data show that the robust strategies systematically outperform non-robust interpolations of the empirical least squares estimators. 
    more » « less
  8. III, Hal Daumé (Ed.)
    We build a Bayesian contextual classification model using an optimistic score ratio for robust binary classification when there is limited information on the class-conditional, or contextual, distribution. The optimistic score searches for the distribution that is most plausible to explain the observed outcomes in the testing sample among all distributions belonging to the contextual ambiguity set which is prescribed using a limited structural constraint on the mean vector and the covariance matrix of the underlying contextual distribution. We show that the Bayesian classifier using the optimistic score ratio is conceptually attractive, delivers solid statistical guarantees, and is computationally tractable. We showcase the power of the proposed optimistic score ratio classifier on both synthetic and empirical data. 
    more » « less
  9. null (Ed.)
    We consider the parameter estimation problem of a probabilistic generative model prescribed using a natural exponential family of distributions. For this problem, the typical maximum likelihood estimator usually overfits under limited training sample size, is sensitive to noise and may perform poorly on downstream predictive tasks. To mitigate these issues, we propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric Kullback-Leibler ball around a parametric nominal distribution. Leveraging the analytical expression of the Kullback-Leibler divergence between two distributions in the same natural exponential family, we show that the min-max estimation problem is tractable in a broad setting, including the robust training of generalized linear models. Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks. 
    more » « less