skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nienhaus, Lea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photon interconversion promises to alleviate thermalization losses for high energy photons and facilitates utilization of sub-bandgap photons – effectively enabling the optimal use of the entire solar spectrum. However, for solid-state device applications, the impact of intermolecular interactions on the energetic landscape underlying singlet fission and triplet-triplet annihilation upconversion cannot be neglected. In the following, the implications of molecular arrangement, intermolecular coupling strength and molecular orientation on the respective processes of solid-state singlet fission and triplet-triplet annihilation are discussed. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  2. Abstract Perovskite materials are promising contenders as the active layer in light‐harvesting and light‐emitting applications if their long‐term stability can be sufficiently increased. Chemical and structural engineering are shown to enhance long‐term stability, but the increased complexity of the material system also leads to inhomogeneous functional properties across various length scales. Thus, scanning probe and high‐resolution microscopy characterization techniques are needed to reveal the role of local defects and the results promise to act as the foundation for future device improvements. A look at the parameter space: technique‐specific sample penetration depth versus probe size highlights a gap in current methods. High spatial resolution combined with a deep penetration depth is not yet achievable. However, multimodal measurement technique may be the key to covering this parameter space. In this perspective, current advanced spectro‐microscopy methods which have been applied to perovskite materials are highlighted. 
    more » « less
    Free, publicly-accessible full text available November 6, 2025
  3. Free, publicly-accessible full text available November 28, 2025
  4. Photon upconversion in the solid state has the potential to improve existing solar and infrared imaging technologies due to its achievable efficiency at low power thresholds. However, despite considerable advancements in solution-phase upconversion, expanding the library of potential solid-state annihilators and developing a fundamental understanding of their solid-state behaviors remains challenging due to intermolecular coupling affecting the underlying energy landscape. Naphtho[2,3-a]pyrene has shown promise as a suitable solid-state annihilator. However, the origin of its multiple underlying emissive features remains unknown. To this point, here, we investigate NaPy/poly(methyl methacrylate) thin films at varying concentrations to tune the intermolecular coupling strength to determine its photophysical properties at a range of temperatures between 300–50 K. The results suggest that the multiple emissive features present in the NaPy thin film emission at room temperature arise from a multidimensional I-aggregate (520 nm), an excimer (550 nm), and a strongly coupled J-dimer (620 nm). In addition, we find that at low temperatures, the emission spectrum is dominated by direct emission from the 1(TT) state. 
    more » « less
    Free, publicly-accessible full text available November 5, 2025
  5. The conversion of low energy photons into high energy photons via triplet-triplet annihilation (TTA) photon upconversion (UC) has become a promising avenue for furthering a wide range of optoelectronic applications. Through the decades of research, many combinations of triplet sensitizer species and annihilator molecules have been investigated unlocking the entire visible spectrum upon proper pairings of sensitizer and annihilator identities. Here, we reflect upon the seminal works which lay the foundation for TTA-UC originating from solution-based methods and highlight the recent advances made within the solid state primarily focusing on perovskite-based triplet generation. 
    more » « less
    Free, publicly-accessible full text available August 21, 2025
  6. Free, publicly-accessible full text available August 1, 2025
  7. The widespread utilization of perovskite-based photovoltaics requires probing both the structural and optical properties under extreme operating conditions to gain a holistic understanding of the material behavior under stressors. Here, we investigate the temperature-dependent behavior of mixed A-site cation lead triiodide perovskite thin films (85% methylammonium and 15% formamidinium) in the range from 300 to 20 K. Through a combination of optical and structural techniques, we find that the tetragonal-to-orthorhombic phase transition occurs at ∼110 K for this perovskite composition, as indicated by the change in the diffraction pattern. With decreasing temperature, the quantum yield increases with a concurrent elongation of the carrier lifetimes, indicating suppression of nonradiative recombination pathways. Interestingly, in contrast to single A-site cation perovskites, an additional optical transition appears in the absorption spectrum when the phase transition is approached, which is also reflected in the emission spectrum. We propose that the splitting of the optical absorption and emission is due to local segregation of the mixed cation perovskite during the phase transition. 
    more » « less
    Free, publicly-accessible full text available October 8, 2025
  8. The development of efficient solid-state photon upconversion (UC) devices remains paramount for practical applications of the technology. In recent years, the incorporation of perovskite thin films as triplet sensitizers for triplet–triplet annihilation (TTA)-based UC has provided a promising solution. In the pursuit of finding an “ideal annihilator” to maximize the apparent anti-Stokes shift, we investigate naphtho[2,3-a]pyrene (NaPy) as an annihilator in both solution-based and perovskite-sensitized TTA-UC systems. Surprisingly, we observe different emission behaviors of NaPy in the solid state based on the excitation wavelength. Under direct excitation, a high-energy transition S1' dominates the emission spectrum, while UC results in increased emission from a lower lying state S1''. We propose that this is the result of aggregation-related lowering of the singlet excited state thus changing the fundamental energetic landscape underlying TTA. Aggregation decreases the singlet energy below the energy level of the triplet pair state 1(TT), yielding energetically favorable emission from the aggregated singlet state S1'' and weak emission from the higher lying singlet state S1' through thermally or entropically driven TTA-UC. 
    more » « less
  9. Probing the underlying attributes of triplet-triplet annihilation-based upconversion systems is necessary to enable future practical applications. Through a combination of excitation power-dependent upconversion measurements under applied magnetic fields and molecular dynamics simulations, Schmidt and coworkers have recently demonstrated a quantitative approach for extracting critical parameters detailing the intricate upconversion process. 
    more » « less