skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nishimura, Yukitoshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. On 10 May 2024, a series of coronal mass ejections were detected at Earth followed by one of the most powerful geomagnetic storms since November 2003. Leveraging a multi–technique approach, this paper provides an account of the ground geomagnetic response during the 10–11 May 2024 extreme geomagnetic storm. More specifically, we show that at the mid-latitudes in the American sector, the storm produced extreme ground geomagnetic field perturbations between 01:50 UT and 02:30 UT on 11 May. Then using the Spherical Elementary Current System method, it is shown that the perturbations were associated with an intense westward propagating auroral westward electrojet current. Finally, with the aid of auroral all-sky images from the Missouri Skies Observatory, we demonstrate that an intense isolated substorm event with onset located between the Great Lakes region and the East Coast United States was the main source of the extreme westward electrojet current and the geomagnetic field perturbations at these typical mid-latitude locations. This study emphasizes the increased risk associated with expansion of the auroral oval into the mid-latitudes during extreme geomagnetic activity. 
    more » « less
    Free, publicly-accessible full text available September 19, 2026
  2. Abstract Auroral substorms that move from auroral (<70°) to polar (>70°) magnetic latitudes (MLAT) are known to occur preferentially when a high‐speed solar wind stream passes by Earth. We report here on observations that occurred during a ∼75‐min interval with high‐speed solar wind on 28 November 2022 during which auroral arcs and very large geomagnetic disturbances (GMDs), also known as magnetic perturbation events (MPEs), with amplitude >9 nT/s = 540 nT/min moved progressively poleward at eight stations spanning a large region near and north of Hudson Bay, Canada shortly before midnight local time. Sustained GMD activity with amplitudes >3 nT/s appeared at each station for durations from 13 to 25 min. Spherical Elementary Currents Systems maps showed the poleward movement of a large‐scale westward electrojet as well as mesoscale electrojet structures and highly localized up/down pairs of vertical currents near these stations when the largest GMDs were observed. This study is consistent with other recent studies showing that very large poleward‐progressing GMDs can occur under high Vsw conditions, but is the first to document the sustained occurrence of large GMDs over such a wide high‐latitude region. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Abstract This study investigates impacts of the May 2024 superstorm on the mid‐latitude Global Positioning System (GPS) scintillation and position errors. Using 1‐Hz GPS receiver data, we identified position errors in PPP mode reaching up to 70 m in the Central United States during the storm main phase on May 10. The PPK solution becomes unstable following the arrival of storm and lasted till the recovery phase, coinciding with reported GPS outages of farming equipment. The large position errors were attributed to strong scintillation and carrier phase cycle slips around the equatorward boundary of the ionosphere trough, where large total electron content (TEC) gradients and irregularities were present. In the Southwestern United States, position errors of 10–20 m were associated with the storm‐enhanced density and equatorial ionization anomaly. Scintillation and cycle slips in this region were minor, and bending of the GPS signal paths (refractive effect) is suggested to cause the position errors. PPP outages were also associated with sudden changes in the geometric distributions of available GPS satellites used in position calculations. On May 11, energetic particle precipitation during substorms led to abrupt jumps in TEC and scintillation, resulting in rapidly evolving position errors of up to 10 m. These findings highlight the critical role of storm‐time plasma transport, precipitation, and irregularity formation in degrading GPS performance. The study underscores the need for accurate ionospheric state specification, improved signal processing technique, real‐time ionospheric corrections, and optimized satellite selection algorithms, to enhance navigation resilience during severe space weather events. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Abstract Following the auroral substorm onset, the active aurora undergoes expansion, which can vary in spatial and temporal extent. The spatiotemporal development of the expansion phase active aurora is controlled by new auroral intensifications that often follow the initial onset. Using seven examples, we investigate the nature of these new auroral intensifications and address a question: are they new auroral onsets, that is, “successive onsets” or poleward‐boundary intensifications (PBIs) and ensuing auroral streamers? We observed events that included both types of auroral features—successive onsets and PBIs—and their combinations. For multiple‐onset substorms, successive onsets may occur eastward, westward, and poleward of the initial onset, resulting in a diverse range of expansion phase spatial extent and durations. Single‐onset substorms show only one auroral onset, but their spatiotemporal development can resemble that of multiple‐onset substorms. However, the additional activations are mainly PBIs and subsequent streamers. In some cases, PBIs undergo explosion, leading to a rapid poleward and azimuthal expansion of the aurora, resembling the auroral substorm onset. A prolonged sequence of PBIs and its longitudinal extension can contribute significantly to the spatiotemporal development of substorms expansion phase. Results suggest that post‐onset flow channels drive the spatiotemporal development of the substorm expansion phase by (a) triggering successive onsets and (b) inducing bursts of PBIs and their prolonged sequence. We speculate that post‐onset flow channels likely originate from the polar cap, but more evaluation is required. Our findings highlight the significance of examining imager data before solely relying on magnetometers to identify substorm onsets. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Abstract. The 10 May 2024 geomagnetic storm, referred to as the Gannon Storm in this paper, was one of the most extreme to have occurred in over 20 years. In the era of smartphones and social media, millions of people from all around the world were alerted to the possibility of exceptional auroral displays. Hence, many people not only witnessed but also photographed the aurora during this event. These citizen science observations, although not from scientific instruments operated by observatories or research groups, can prove to be invaluable in obtaining data to characterise this extraordinary event. In particular, many observers saw and photographed the aurora at mid-latitudes, where ground-based instruments targeting auroral studies are sparse or absent. Moreover, the proximity of the event to the Northern Hemisphere summer solstice meant that many optical instruments were not in operation due to the lack of suitably dark conditions. We created an online survey and circulated it within networks of aurora photographers to collect observations of the aurora and of disruptions in technological systems that were experienced during this superstorm. We obtained 696 citizen science reports from over 30 countries, containing information such as the time and location of aurora sightings and the observed colours and auroral forms, as well as geolocalisation, network, and power disruptions noticed during the geomagnetic storm. We supplemented the obtained dataset with 186 auroral observations logged in the Skywarden catalogue (https://taivaanvahti.fi, last access: 19 December 2024) by citizen scientists. The main findings enabled by the data collected through these reports are that the aurora was widely seen from locations at geomagnetic latitudes ranging between 30 and 60°, with a few reports from even lower latitudes. This was significantly further equatorward than predicted by auroral oval models. The reported auroral emission colours, predominantly red and pink and intense enough to reach naked-eye visibility, suggest that the auroral electron precipitation contained large fluxes of low-energy (< 1 keV) particles. This study also reveals the limitations of citizen science data collection via a rudimentary online form. We discuss possible solutions to enable more detailed and quantitative studies of extreme geomagnetic events with citizen science in the future. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  6. Abstract Space‐based observations of the signatures associated with STEVE show how this phenomenon might be closely related to an extreme version of a SAID channel. Measurements show high velocities (>4 km/s), high temperatures (>4,000 K), and very large current density drivers (up to 1 μA/m2). This phenomena happens in a small range of latitudes, less than a degree, but with a large longitudinal span. In this study, we utilize the GEMINI model to simulate an extreme SAID/STEVE. We assume a FAC density coming from the magnetosphere as the main driver, allowing all other parameters to adjust accordingly. We have two main objectives with this work: show how an extreme SAID can have velocity values comparable or larger than the ones measured under STEVE, and to display the limitations and missing physics that arise due to the extreme values of temperature and velocity. Changes had to be made to GEMINI due to the extreme conditions, particularly some neutral‐collision frequencies. The importance of the temperature threshold at which some collision frequencies go outside their respective bounds, as well as significance of the energies that would cause inelastic collisions and impact ionization are displayed and discussed. We illustrate complex structures and behaviors, emphasizing the importance of 3D simulations in capturing these phenomena. Longitudinal structure is emphasized, as the channel develops differently depending on MLT. However, these simulations should be viewed as approximations due to the limited observations available to constrain the model inputs and the assumptions made to achieve sensible results. 
    more » « less
  7. Abstract Electron density irregularities in the ionosphere can give rise to scintillations, affecting radio wave phase and amplitude. While scintillations in the cusp and polar cap regions are commonly associated with mesoscale density inhomogeneities and/or shearing, the auroral regions exhibit a strong correlation between scintillation and density structures generated by electron precipitation (arcs). We aim to examine the impact of electron precipitation on the formation of scintillation‐producing density structures using a high‐resolution physics‐based plasma model, the “Geospace Environment Model of Ion‐Neutral Interactions,” coupled with a radio propagation model, the “Satellite‐beacon Ionospheric‐scintillation Global Model of the upper Atmosphere.” Specifically, we explore the effects of varying spatial and temporal characteristics of the precipitation, including electron total energy flux and their characteristic energies, obtained from the all‐sky‐imagers and Poker Flat Incoherent Scatter Radar observations, on auroral scintillation. To capture small‐scale structures, we incorporate a power‐law turbulence spectrum that induces short wavelength features sensitive to scintillation. Finally, we compare our simulated scintillation results with satellite‐observed scintillations, along with spectral comparisons. 
    more » « less
  8. Flow channels can extend across the polar cap from the dayside to the nightside auroral oval, where they lead to localized reconnection and auroral oval disturbances. Such flow channels can persist within the polar cap >1½ hours, can move azimuthally with direction controlled by IMF By, and may affect time and location of auroral oval disturbances. We have followed a polar cap arc as it moved duskward from Canada to Alaska for ∼2 h while connected to the oval. Two-dimensional ionospheric flows show an adjacent flow channel that moved westward with the arc and was a distinct feature of polar cap convection that locally impinged upon the outer boundary of the auroral oval. The flow channel’s interaction with the oval appears to have triggered two separate substorms during its trip across western Canada and Alaska, controlling the onset location and contributing to subsequent development of substorm activity within the oval. The first substorm (over Canada) occurred during approximately equatorward polar cap flow, whereas the second substorm (over Alaska) occurred as the polar cap arc and flow channel bent strongly azimuthally and appeared to “lay down” along the poleward boundary. The oval became unusually thin, leading to near contact between the polar cap arc and the brightening onset auroral arc within the oval. These observations illustrate the crucial role of polar cap flow channels in the time, location, and duration of space weather activity, and the importance of the duration and azimuthal motion of flow channels within the nightside polar cap. 
    more » « less
  9. Abstract Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high‐speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast‐coronal mass ejection driven storms. 
    more » « less