skip to main content

Search for: All records

Creators/Authors contains: "Nitze, Ingmar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wetlands in Arctic drained lake basins (DLBs) have a high potential for carbon storage in vegetation and peat as well as for elevated greenhouse gas emissions. However, the evolution of vegetation and organic matter is rarely studied in DLBs, making these abundant wetlands especially uncertain elements of the permafrost carbon budget. We surveyed multiple DLB generations in northern Alaska with the goal to assess vegetation, microtopography, and organic matter in surface sediment and pond water in DLBs and to provide the first high-resolution land cover classification for a DLB system focussing on moisture-related vegetation classes for the Teshekpuk Lake region. We associated sediment properties and methane concentrations along a post-drainage succession gradient with remote sensing-derived land cover classes. Our study distinguished five eco-hydrological classes using statistical clustering of vegetation data, which corresponded to the land cover classes. We identified surface wetness and time since drainage as predictors of vegetation composition. Microtopographic complexity increased after drainage. Organic carbon and nitrogen contents in sediment, and dissolved organic carbon (DOC) and dissolved nitrogen (DN) in ponds were high throughout, indicating high organic matter availability and decomposition. We confirmed wetness as a predictor of sediment methane concentrations. Our findings suggest moderate to high methane concentrations independent of drainage age, with particularly high concentrations beneath submerged patches (up to 200μmol l−1) and in pond water (up to 22μmol l−1). In our DLB system, wet and shallow submerged patches with high methane concentrations occupied 54% of the area, and ponds with high DOC, DN and methane occupied another 11%. In conclusion, we demonstrate that DLB wetlands are highly productive regarding organic matter decomposition and methane production. Machine learning-aided land cover classification using high-resolution multispectral satellite imagery provides a useful tool for future upscaling of sediment properties and methane emission potentials from Arctic DLBs.

    more » « less
  2. Abstract

    Permafrost is a sub-ground phenomenon and therefore cannot be directly observed from space. It is an Essential Climate Variable and associated with climate tipping points. Multi-annual time series of permafrost ground temperatures can be, however, derived through modelling of the heat transfer between atmosphere and ground using landsurface temperature, snow- and landcover observations from space. Results show that the northern hemisphere permafrost ground temperatures have increased on average by about one degree Celsius since 2000. This is in line with trends of permafrost proxies observable from space: surface water extent has been decreasing across the Arctic; the landsurface is subsiding continuously in some regions indicating ground ice melt; hot summers triggered increased subsidence as well as thaw slumps; rock glaciers are accelerating in some mountain regions. The applicability of satellite data for permafrost proxy monitoring has been demonstrated mostly on a local to regional scale only. There is still a lack of consistency of acquisitions and of very high spatial resolution observations. Both are needed for implementation of circumpolar monitoring of lowland permafrost. In order to quantify the impacts of permafrost thaw on the carbon cycle, advancement in wetland and atmospheric greenhouse gas concentration monitoring from space is needed.

    more » « less
  3. Abstract Beavers were not previously recognized as an Arctic species, and their engineering in the tundra is considered negligible. Recent findings suggest that beavers have moved into Arctic tundra regions and are controlling surface water dynamics, which strongly influence permafrost and landscape stability. Here we use 70 years of satellite images and aerial photography to show the scale and magnitude of northwestward beaver expansion in Alaska, indicated by the construction of over 10,000 beaver ponds in the Arctic tundra. The number of beaver ponds doubled in most areas between ~ 2003 and ~ 2017. Earlier stages of beaver engineering are evident in ~ 1980 imagery, and there is no evidence of beaver engineering in ~ 1952 imagery, consistent with observations from Indigenous communities describing the influx of beavers over the period. Rapidly expanding beaver engineering has created a tundra disturbance regime that appears to be thawing permafrost and exacerbating the effects of climate change. 
    more » « less
  4. Remote sensing-based Earth Observation plays an important role in assessing environmental changes throughout our planet. As an image-heavy domain, the evaluation of the data strongly focuses on statistical and pixel-based spatial analysis methods. However, considering the complexity of our Earth system, there are some environmental structures and dependencies that are not possible to accurately describe with these traditional image analysis approaches. One example for such a limitation is the representation of (spatial) networks and their characteristics. In this study, we thus propose a computer vision approach that enables the representation of semantic information gained from images as graphs. As an example, we investigate digital terrain models of Arctic permafrost landscapes with its very characteristic polygonal patterned ground. These regular patterns, which are clearly visible in high-resolution image and elevation data, are formed by subsurface ice bodies that are very vulnerable to rising temperatures in a warming Arctic. Observing these networks’ topologies and metrics in space and time with graph analysis thus allows insights into the landscape’s complex geomorphology, hydrology, and ecology and therefore helps to quantify how they interact with climate change. We show that results extracted with this analytical and highly automated approach are in line with those gathered from other manual studies or from manual validation. Thus, with this approach, we introduce a method that, for the first time, enables upscaling of such terrain and network analysis to potentially pan-Arctic scales where collecting in-situ field data is strongly limited. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    In a warming Arctic, permafrost-related disturbances, such as retrogressive thaw slumps (RTS), are becoming more abundant and dynamic, with serious implications for permafrost stability and bio-geochemical cycles on local to regional scales. Despite recent advances in the field of earth observation, many of these have remained undetected as RTS are highly dynamic, small, and scattered across the remote permafrost region. Here, we assessed the potential strengths and limitations of using deep learning for the automatic segmentation of RTS using PlanetScope satellite imagery, ArcticDEM and auxiliary datasets. We analyzed the transferability and potential for pan-Arctic upscaling and regional cross-validation, with independent training and validation regions, in six different thaw slump-affected regions in Canada and Russia. We further tested state-of-the-art model architectures (UNet, UNet++, DeepLabv3) and encoder networks to find optimal model configurations for potential upscaling to continental scales. The best deep learning models achieved mixed results from good to very good agreement in four of the six regions (maxIoU: 0.39 to 0.58; Lena River, Horton Delta, Herschel Island, Kolguev Island), while they failed in two regions (Banks Island, Tuktoyaktuk). Of the tested architectures, UNet++ performed the best. The large variance in regional performance highlights the requirement for a sufficient quantity, quality and spatial variability in the training data used for segmenting RTS across diverse permafrost landscapes, in varying environmental conditions. With our highly automated and configurable workflow, we see great potential for the transfer to active RTS clusters (e.g., Peel Plateau) and upscaling to much larger regions. 
    more » « less
  7. null (Ed.)
    Abstract The accelerating climatic changes and new infrastructure development across the Arctic require more robust risk and environmental assessment, but thus far there is no consistent record of human impact. We provide a first panarctic satellite-based record of expanding infrastructure and anthropogenic impacts along all permafrost affected coasts (100 km buffer, ≈6.2 Mio km 2 ), named the Sentinel-1/2 derived Arctic Coastal Human Impact (SACHI) dataset. The completeness and thematic content goes beyond traditional satellite based approaches as well as other publicly accessible data sources. Three classes are considered: linear transport infrastructure (roads and railways), buildings, and other impacted area. C-band synthetic aperture radar and multi-spectral information (2016–2020) is exploited within a machine learning framework (gradient boosting machines and deep learning) and combined for retrieval with 10 m nominal resolution. In total, an area of 1243 km 2 constitutes human-built infrastructure as of 2016–2020. Depending on region, SACHI contains 8%–48% more information (human presence) than in OpenStreetMap. 221 (78%) more settlements are identified than in a recently published dataset for this region. 47% is not covered in a global night-time light dataset from 2016. At least 15% (180 km 2 ) correspond to new or increased detectable human impact since 2000 according to a Landsat-based normalized difference vegetation index trend comparison within the analysis extent. Most of the expanded presence occurred in Russia, but also some in Canada and US. 31% and 5% of impacted area associated predominantly with oil/gas and mining industry respectively has appeared after 2000. 55% of the identified human impacted area will be shifting to above 0 ∘ C ground temperature at two meter depth by 2050 if current permafrost warming trends continue at the pace of the last two decades, highlighting the critical importance to better understand how much and where Arctic infrastructure may become threatened by permafrost thaw. 
    more » « less