Abstract High-latitude and altitude cold regions are affected by climate warming and permafrost degradation. One of the major concerns associated with degrading permafrost is thaw subsidence (TS) due to melting of excess ground ice and associated thaw consolidation. Field observations, remote sensing, and numerical modeling are used to measure and estimate the extent and rates of TS across broad spatial and temporal scales. Our new data synthesis effort from diverse permafrost regions of North America and Eurasia, confirms widespread TS across the panarctic permafrost domain with rates of up to 2 cm yr−1in the areas with low ice content and more than 3 cm yr−1in regions with ice-rich permafrost. Areas with human activities or areas affected by wildfires exhibited higher subsidence rates. Our findings suggest that permafrost landscapes are undergoing geomorphic change that is impacting hydrology, ecosystems, and human infrastructure. The development of a systematic TS monitoring is urgently needed to deliver consistent and continuous exchange of data across different permafrost regions. Integration of coordinated field observations, remote sensing, and modeling of TS across a range of scales would contribute to better understanding of rapidly changing permafrost environments and resulting climate feedbacks. 
                        more » 
                        « less   
                    
                            
                            Permafrost Monitoring from Space
                        
                    
    
            Abstract Permafrost is a sub-ground phenomenon and therefore cannot be directly observed from space. It is an Essential Climate Variable and associated with climate tipping points. Multi-annual time series of permafrost ground temperatures can be, however, derived through modelling of the heat transfer between atmosphere and ground using landsurface temperature, snow- and landcover observations from space. Results show that the northern hemisphere permafrost ground temperatures have increased on average by about one degree Celsius since 2000. This is in line with trends of permafrost proxies observable from space: surface water extent has been decreasing across the Arctic; the landsurface is subsiding continuously in some regions indicating ground ice melt; hot summers triggered increased subsidence as well as thaw slumps; rock glaciers are accelerating in some mountain regions. The applicability of satellite data for permafrost proxy monitoring has been demonstrated mostly on a local to regional scale only. There is still a lack of consistency of acquisitions and of very high spatial resolution observations. Both are needed for implementation of circumpolar monitoring of lowland permafrost. In order to quantify the impacts of permafrost thaw on the carbon cycle, advancement in wetland and atmospheric greenhouse gas concentration monitoring from space is needed. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10401693
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Surveys in Geophysics
- Volume:
- 44
- Issue:
- 5
- ISSN:
- 0169-3298
- Page Range / eLocation ID:
- p. 1579-1613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Arctic has warmed three times the rate of the global average, resulting in extensive thaw of perennially frozen ground known as permafrost. While it is well understood that permafrost thaw will continue and likely accelerate, thaw rates are nonuniform due, in part, to the expansion of Arctic trees and tall shrubs that may increase ground temperatures. However, in permafrost regions with short‐stature vegetation (height < 40 cm), our understanding of how ground temperature regimes vary by vegetation type is limited as these sites are generally found in remote high‐latitude regions that lack in situ ground temperature measurements. This study aims to overcome this limitation by leveraging in situ shallow ground temperatures, remote sensing observations, and topographic parameters across 22 sites with varying types of short‐stature vegetation on Baffin Island, Canada, a remote region underlain by rapidly warming continuous permafrost. Results suggest that the type of short‐stature vegetation does not necessarily correspond to a distinct shallow ground temperature regime. Instead, in permafrost regions with short‐stature vegetation, factors that control snow duration, such as microtopography, may have a larger effect on evolving ground temperature regimes and thus permafrost vulnerability. These findings suggest that anticipating permafrost thaw in regions of short‐stature vegetation may be more nuanced than previously suggested.more » « less
- 
            Abstract Continuous permafrost is present across the McMurdo Dry Valleys of southern Victoria Land, Antarctica. While summer active-layer thaw is common in the low-elevation portions of the Dry Valleys, active layers have not significantly thickened over time. However, in some locations, coastal Antarctic permafrost has begun to warm. Here, based on soil and meteorological measurements from 1993 to 2023, we show that wintertime soil temperatures have increased across multiple sites in the Dry Valleys, at rates exceeding the pace of summer soil warming. Linear warming trends over time are significant (P< 0.05) at six of seven soil monitoring sites. Winter warming is strongly correlated with increased numbers of down-valley wind events (Foehn/katabatics), but it may also be driven by increased incident longwave radiation at some stations (although winter longwave increase is not significant over time). While down-valley wind events increase winter warming, when down-valley wind events are excluded from the record, winter soil warming remains persistent and significant, suggesting that Antarctic soils are experiencing less cold winters over time in response to regional warming. Together, these observations suggest that some Antarctic permafrost may be approaching a transition to discontinuous permafrost in some regions as winter freezing intensity is reduced over time.more » « less
- 
            ABSTRACT Research in geocryology is currently principally concerned with the effects of climate change on permafrost terrain. The motivations for most of the research are (1) quantification of the anticipated net emissions of CO2and CH4from warming and thaw of near‐surface permafrost and (2) mitigation of effects on infrastructure of such warming and thaw. Some of the effects, such as increases in ground temperature or active‐layer thickness, have been observed for several decades. Landforms that are sensitive to creep deformation are moving more quickly as a result, andRock Glacier Velocityis now part of the Essential Climate VariablePermafrostof the Global Climate Observing System. Other effects, for example, the occurrence of physical disturbances associated with thawing permafrost, particularly the development of thaw slumps, have noticeably increased since 2010. Still, others, such as erosion of sedimentary permafrost coasts, have accelerated. Geochemical effects in groundwater from trace elements, including contaminants, and those that issue from the release of sediment particles during mass wasting have become evident since 2020. Net release of CO2and CH4from thawing permafrost is anticipated within two decades and, worldwide, may reach emissions that are equivalent to a large industrial economy. The most immediate local concerns are for waste disposal pits that were constructed on the premise that permafrost would be an effective and permanent containment medium. This assumption is no longer valid at many contaminated sites. The role of ground ice in conditioning responses to changes in the thermal or hydrological regimes of permafrost has re‐emphasized the importance of regional conditions, particularly landscape history, when applying research results to practical problems.more » « less
- 
            Abstract In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
