skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nobile, Nicholas_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optical phase-change materials have enabled nonvolatile programmability in integrated photonic circuits by leveraging a reversible phase transition between amorphous and crystalline states. To control these materials in a scalable manner on-chip, heating the waveguide itself via electrical currents is an attractive option which has been recently explored using various approaches. Here, we compare the heating efficiency, fabrication variability, and endurance of two promising heater designs which can be easily integrated into silicon waveguides—a resistive microheater using n-doped silicon and one using a silicon p-type/intrinsic/n-type (PIN) junction. Raman thermometry is used to characterize the heating efficiencies of these microheaters, showing that both devices can achieve similar peak temperatures but revealing damage in the PIN devices. Subsequent endurance testing and characterization of both device types provide further insights into the reliability and potential damage mechanisms that can arise in electrically programmable phase-change photonic devices. 
    more » « less
  2. Bragg gratings offer high-performance filtering and routing of light on-chip through a periodic modulation of a waveguide’s effective refractive index. Here, we model and experimentally demonstrate the use of Sb2Se3, a nonvolatile and transparent phase-change material, to tune the resonance conditions in two devices which leverage periodic Bragg gratings—a stopband filter and Fabry-Perot cavity. Through simulations, we show that similar refractive indices between silicon and amorphous Sb2Se3can be used to induce broadband transparency, while the crystalline state can enhance the index contrast in these Bragg devices. Our experimental results show the promise and limitations of this design approach and highlight specific fabrication challenges which need to be addressed in future implementations. 
    more » « less