The environments where galaxies reside crucially shape their star formation histories. We investigate a large sample of 1626 cluster galaxies located within 105 galaxy clusters spanning a large range in redshift (0.26 <
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z < 1.13). The galaxy clusters are massive (M 500≳ 2 × 1014M ⊙) and uniformly selected from the SPT and ACT Sunyaev–Zel’dovich surveys. With spectra in hand for thousands of cluster members, we use the galaxies’ position in projected phase space as a proxy for their infall times, which provides a more robust measurement of environment than quantities such as projected clustercentric radius. We find clear evidence for a gradual age increase of the galaxy’s mean stellar populations (∼0.71 ± 0.4 Gyr based on a 4000 Å break, Dn4000) with the time spent in the cluster environment. This environmental quenching effect is found regardless of galaxy luminosity (faint or bright) and redshift (low or high-z ), although the exact stellar age of galaxies depends on both parameters at fixed environmental effects. Such a systematic increase of Dn4000 with infall proxy would suggest that galaxies that were accreted into hosts earlier were quenched earlier due to longer exposure to environmental effects such as ram pressure stripping and starvation. Compared to the typical dynamical timescales of 1–3 Gyr of cluster galaxies, the relatively small age increase (∼0.71 ± 0.4 Gyr) found in our sample galaxies seems to suggest that a slow environmental process such as starvation is the dominant quenching pathway. Our results provide new insights into environmental quenching effects spanning a large range in cosmic time (∼5.2 Gyr,z = 0.26–1.13) and demonstrate the power of using a kinematically derived infall time proxy. -
ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$), no additional environmental quenching is required.
-
ABSTRACT We calculate H α-based star formation rates and determine the star formation rate–stellar mass relation for members of three Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) clusters at z ∼ 1.6 and serendipitously identified field galaxies at similar redshifts to the clusters. We find similar star formation rates in cluster and field galaxies throughout our range of stellar masses. The results are comparable to those seen in other clusters at similar redshifts, and consistent with our previous photometric evidence for little quenching activity in clusters. One possible explanation for our results is that galaxies in our z ∼ 1.6 clusters have been accreted too recently to show signs of environmental quenching. It is also possible that the clusters are not yet dynamically mature enough to produce important environmental quenching effects shown to be important at low redshift, such as ram-pressure stripping or harassment.more » « less