skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nolan, Deborah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past decade, data science courses have been growing more popular across university campuses. These courses often involve a mix of programming and statistics and are taught by instructors from diverse backgrounds. In our experiences launching a data science program at a large public U.S. university over the past four years, we noticed one central tension within many such courses: instructors must finely balance how much computing versus statistics to teach in the limited available time. In this experience report, we provide a detailed firsthand reflection on how we have personally balanced these two major topic areas within several offerings of a large introductory data science course that we taught and wrote an accompanying textbook for; our course has served several thousand students over the past four years. We present three case studies from our experiences to illustrate how computer science and statistics instructors approach data science differently on topics ranging from algorithmic depth to modeling to data acquisition. We then draw connections to deeper tradeoffs in data science to help guide instructors who design interdisciplinary courses. We conclude by suggesting ways that instructors can incorporate both computer science and statistics perspectives to improve data science teaching. 
    more » « less
  2. null (Ed.)