- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Noothigattu, Ritesh (5)
-
Procaccia, Ariel D. (4)
-
Kahng, Anson (1)
-
Lee, Min Kyung (1)
-
Peters, Dominik (1)
-
Procaccia, Ariel (1)
-
Psomas, Alexandros (1)
-
Shah, Nihar (1)
-
Shah, Nihar B. (1)
-
Yan, Tom (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It is common to see a handful of reviewers reject a highly novel paper, because they view, say, extensive experiments as far more important than novelty, whereas the community as a whole would have embraced the paper. More generally, the disparate mapping of criteria scores to final recommendations by different reviewers is a major source of inconsistency in peer review. In this paper we present a framework inspired by empirical risk minimization (ERM) for learning the community's aggregate mapping. The key challenge that arises is the specification of a loss function for ERM. We consider the class of L(p,q) loss functions, which is a matrix-extension of the standard class of Lp losses on vectors; here the choice of the loss function amounts to choosing the hyperparameters p and q. To deal with the absence of ground truth in our problem, we instead draw on computational social choice to identify desirable values of the hyperparameters p and q. Specifically, we characterize p=q=1 as the only choice of these hyperparameters that satisfies three natural axiomatic properties. Finally, we implement and apply our approach to reviews from IJCAI 2017.more » « less
-
Noothigattu, Ritesh; Yan, Tom; Procaccia, Ariel D. (, AAAI)
-
Noothigattu, Ritesh; Shah, Nihar B.; Procaccia, Ariel D. (, Journal of artificial intelligence research)
-
Noothigattu, Ritesh; Peters, Dominik; Procaccia, Ariel D. (, NeurIPS)
-
Kahng, Anson; Lee, Min Kyung; Noothigattu, Ritesh; Procaccia, Ariel D.; Psomas, Alexandros (, ICML 2019)
An official website of the United States government

Full Text Available