Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We use polarization data from SOFIA HAWC+ to investigate the interplay between magnetic fields and stellar feedback in altering gas dynamics within the high-mass star-forming region RCW 36, located in Vela C. This region is of particular interest as it has a bipolar Hiiregion powered by a massive star cluster, which may be impacting the surrounding magnetic field. To determine if this is the case, we apply the histogram of relative orientations (HRO) method to quantify the relative alignment between the inferred magnetic field and elongated structures observed in several data sets such as dust emission, column density, temperature, and spectral line intensity maps. The HRO results indicate a bimodal alignment trend, where structures observed with dense gas tracers show a statistically significant preference for perpendicular alignment relative to the magnetic field, while structures probed by the photodissociation region (PDR) tracers tend to align preferentially parallel relative to the magnetic field. Moreover, the dense gas and PDR associated structures are found to be kinematically distinct such that a bimodal alignment trend is also observed as a function of line-of-sight velocity. This suggests that the magnetic field may have been dynamically important and set a preferred direction of gas flow at the time that RCW 36 formed, resulting in a dense ridge developing perpendicular to the magnetic field. However, on filament scales near the PDR region, feedback may be energetically dominating the magnetic field, warping its geometry and the associated flux-frozen gas structures, causing the observed preference for parallel relative alignment.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Magnetic fields likely play an important role in the formation of young protostars. Multiscale and multiwavelength dust polarization observations can reveal the inferred magnetic field from scales of the cloud to core to protostar. We present continuum polarization observations of the young protostellar triple system IRAS 16293-2422 at 89μm using HAWC+ on SOFIA. The inferred magnetic field is very uniform with an average field angle of 89° ± 23° (E of N), which is different from the ∼170° field morphology seen at 850μm at larger scales (≳2000 au) with JCMT POL-2 and at 1.3 mm on smaller scales (≲300 au) with Atacama Large Millimeter/submillimeter Array. The HAWC+ magnetic field direction is aligned with the known E-W outflow. This alignment difference suggests that the shorter wavelength HAWC+ data is tracing the magnetic field associated with warmer dust likely from the outflow cavity, whereas the longer wavelength data are tracing the bulk magnetic field from cooler dust. Also, we show in this source the dust emission peak is strongly affected by the observing wavelength. The dust continuum peaks closer to source B (northern source) at shorter wavelengths and progressively moves toward the southern A source with increasing wavelength (from 22 to 850μm).more » « lessFree, publicly-accessible full text available June 1, 2025
-
Abstract We present Stratospheric Observatory For Infrared Astronomy (SOFIA) + Atacama Large Millimeter/submillimeter Array (ALMA) continuum and spectral-line polarization data on the massive molecular cloud BYF 73, revealing important details about the magnetic field morphology, gas structures, and energetics in this unusual massive star formation laboratory. The 154μm HAWC+ polarization map finds a highly organized magnetic field in the densest, inner 0.55 × 0.40 pc portion of the cloud, compared to an unremarkable morphology in the cloud’s outer layers. The 3 mm continuum ALMA polarization data reveal several more structures in the inner domain, including a parsec-long, ∼500M⊙“Streamer” around the central massive protostellar object MIR 2, with magnetic fields mostly parallel to the east–west Streamer but oriented north–south across MIR 2. The magnetic field orientation changes from mostly parallel to the column density structures to mostly perpendicular, at thresholdsNcrit= 6.6 × 1026m−2,ncrit= 2.5 × 1011m−3, andBcrit= 42 ± 7 nT. ALMA also mapped Goldreich–Kylafis polarization in12CO across the cloud, which traces, in both total intensity and polarized flux, a powerful bipolar outflow from MIR 2 that interacts strongly with the Streamer. The magnetic field is also strongly aligned along the outflow direction; energetically, it may dominate the outflow near MIR 2, comprising rare evidence for a magnetocentrifugal origin to such outflows. A portion of the Streamer may be in Keplerian rotation around MIR 2, implying a gravitating mass 1350 ± 50M⊙for the protostar+disk+envelope; alternatively, these kinematics can be explained by gas in free-fall toward a 950 ± 35M⊙object. The high accretion rate onto MIR 2 apparently occurs through the Streamer/disk, and could account for ∼33% of MIR 2's total luminosity via gravitational energy release.more » « less
-
Abstract We present H -band (1.65 μ m) and SOFIA HAWC+ 154 μ m polarization observations of the low-mass core L483. Our H -band observations reveal a magnetic field that is overwhelmingly in the E–W direction, which is approximately parallel to the bipolar outflow that is observed in scattered IR light and in single-dish 12 CO observations. From our 154 μ m data, we infer a ∼45° twist in the magnetic field within the inner 5″ (1000 au) of L483. We compare these new observations with published single-dish 350 μ m polarimetry and find that the 10,000 au scale H -band data match the smaller-scale 350 μ m data, indicating that the collapse of L483 is magnetically regulated on these larger scales. We also present high-resolution 1.3 mm Atacama Large Millimeter/submillimeter Array data of L483 that reveals it is a close binary star with a separation of 34 au. The plane of the binary of L483 is observed to be approximately parallel to the twisted field in the inner 1000 au. Comparing this result to the ∼1000 au protostellar envelope, we find that the envelope is roughly perpendicular to the 1000 au HAWC+ field. Using the data presented, we speculate that L483 initially formed as a wide binary and the companion star migrated to its current position, causing an extreme shift in angular momentum thereby producing the twisted magnetic field morphology observed. More observations are needed to further test this scenario.more » « less
-
Abstract Star formation primarily occurs in filaments where magnetic fields are expected to be dynamically important. The largest and densest filaments trace the spiral structure within galaxies. Over a dozen of these dense (∼10 4 cm −3 ) and long (>10 pc) filaments have been found within the Milky Way, and they are often referred to as “bones.” Until now, none of these bones has had its magnetic field resolved and mapped in its entirety. We introduce the SOFIA legacy project FIELDMAPS which has begun mapping ∼10 of these Milky Way bones using the HAWC+ instrument at 214 μ m and 18.″2 resolution. Here we present a first result from this survey on the ∼60 pc long bone G47. Contrary to some studies of dense filaments in the Galactic plane, we find that the magnetic field is often not perpendicular to the spine (i.e., the center line of the bone). Fields tend to be perpendicular in the densest areas of active star formation and more parallel or random in other areas. The average field is neither parallel nor perpendicular to the Galactic plane or the bone. The magnetic field strengths along the spine typically vary from ∼20 to ∼100 μ G. Magnetic fields tend to be strong enough to suppress collapse along much of the bone, but for areas that are most active in star formation, the fields are notably less able to resist gravitational collapse.more » « less
-
TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) in Puebla, Mexico to survey distant galaxies and star-forming regions in the Milky Way. The optical design simultaneously couples the field of view onto focal planes at 150, 220, and 280 GHz. The optical design and detector properties, as well as a data-driven model of the atmospheric emission of the LMT site, inform the sensitivity model of the integrated instrument. This model is used to optimize the instrument design, and to calculate the mapping speed as an early forecast of the science reach of the instrument.more » « less