skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Null, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision‐making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models. 
    more » « less
  2. Abstract Reservoirs are sometimes managed to meet agricultural and other water demands, while also maintaining streamflow for aquatic species and ecosystems. In the Henrys Fork Snake River, Idaho (USA), irrigation‐season management of a headwater reservoir is informed by a flow target in a management reach ~95 km downstream. The target is in place to meet irrigation demand and maintain aquatic habitat within the 11.4 km management reach and has undergone four flow target assignments from 1978 to 2021. Recent changes to irrigation‐season management to maximize reservoir carryover warranted investigation into the flow target assignment. Thus, we created a streamflow‐habitat model using hydraulic measurements, habitat unit mapping, and published habitat suitability criteria for Brown Trout (Salmo trutta), Rainbow Trout (Oncorhynchus mykiss), and Mountain Whitefish (Prosopium williamsoni). We used model output to compare habitat availability across two management regimes (1978–2017 and 2018–2021). We found that efforts to minimize reservoir releases in 2018–2021 did not reduce mean irrigation‐season fish habitat relative to natural flow, but did reduce overall fish habitat variability during the irrigation season compared to streamflow management in 1978–2017. Field observations for this research led to an adjusted flow target in 2020 that moved the target location downstream of intervening irrigation diversions. Using our model output, we demonstrated that moving the location of the target to account for local irrigation diversions will contribute to more consistently suitable fish habitat in the reach. Our study demonstrates the importance of site selection for establishing environmental flow targets. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the past three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB. 
    more » « less
  5. null (Ed.)
    Managed aquifer recharge (MAR) is typically used to enhance the agricultural water supply but may also be promising to maintain summer streamflows and temperatures for cold-water fish. An existing aquifer model, water temperature data, and analysis of water administration were used to assess potential benefits of MAR to cold-water fisheries in Idaho’s Snake River. This highly-regulated river supports irrigated agriculture worth US $10 billion and recreational trout fisheries worth $100 million. The assessment focused on the Henry’s Fork Snake River, which receives groundwater from recharge incidental to irrigation and from MAR operations 8 km from the river, addressing (1) the quantity and timing of MAR-produced streamflow response, (2) the mechanism through which MAR increases streamflow, (3) whether groundwater inputs decrease the local stream temperature, and (4) the legal and administrative hurdles to using MAR for cold-water fisheries conservation in Idaho. The model estimated a long-term 4%–7% increase in summertime streamflow from annual MAR similar to that conducted in 2019. Water temperature observations confirmed that recharge increased streamflow via aquifer discharge rather than reduction in river losses to the aquifer. In addition, groundwater seeps created summer thermal refugia. Measured summer stream temperature at seeps was within the optimal temperature range for brown trout, averaging 14.4 °C, whereas ambient stream temperature exceeded 19 °C, the stress threshold for brown trout. Implementing MAR for fisheries conservation is challenged by administrative water rules and regulations. Well-developed and trusted water rights and water-transaction systems in Idaho and other western states enable MAR. However, in Idaho, conservation groups are unable to engage directly in water transactions, hampering MAR for fisheries protection. 
    more » « less