skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nusbaum, Howard C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While judgments of agency were once construed as metacognitive in nature, recent experimental and computational work has shown that agency judgments do not (always) depend on metacognitive resources (Constant et al., 2022; Wen et al., 2023). This development has left the role of metacognitive in generating the subjective experience of agency largely uncharacterized. We measured psychometric thresholds (i.e. first order sensitivity) and metacognitive sensitives for sensorimotor agency judgments, as well as high-level beliefs about one’s agency using an established scale. We found, among a large (n=195) sample, that the relationship between subjects’ moment-by-moment judgments of control and their high-level beliefs was almost entirely mediated by metacognitive access, revealing a novel role of metacognition in linking experiences of agency with the belief of being an agent. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Abstract Most research in the behavioral sciences aims to characterize effects of interest using sample means intended to describe the “typical” person. A difference in means is usually construed as a size difference in an effect common across subjects. However, mean effect size varies with bothwithin-subject effect sizeandpopulation prevalence(proportion of population showing the effect) in compared groups or across conditions. Few studies consider how prevalence affects mean effect size measurements and existing estimators of prevalence are, conversely, confounded by uncertainty about within-subject power. We introduce a widely applicable Bayesian method, thep-curve mixture model, that jointly estimates prevalence and effect size. Our approach outperforms existing prevalence estimation methods when within-subject power is uncertain and is sensitive to differences in prevalence or effect size across groups or experimental conditions. We present examples, extracting novel insights from existing datasets, and provide a user-facing software tool. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Every movement requires the nervous system to solve a complex biomechanical control problem, but this process is mostly veiled from one's conscious awareness. Simultaneously, we also have conscious experience of controlling our movements - our sense of agency (SoA). Whether SoA corresponds to those neural representations that implement actual neuromuscular control is an open question with ethical, medical, and legal implications. If SoA is the conscious experience of control, this predicts that SoA can be decoded from the same brain structures that implement the so-called inverse kinematic computations for planning movement. We correlated human fMRI measurements during hand movements with the internal representations of a deep neural network (DNN) performing the same hand control task in a biomechanical simulation - revealing detailed cortical encodings of sensorimotor states, idiosyncratic to each subject. We then manipulated SoA by usurping control of participants' muscles via electrical stimulation, and found that the same voxels which were best explained by modeled inverse kinematic representations - which, strikingly, were located in canonically visual areas - also predicted SoA. Importantly, model-brain correspondences and robust SoA decoding could both be achieved within single subjects, enabling relationships between motor representations and awareness to be studied at the level of the individual. 
    more » « less
    Free, publicly-accessible full text available July 24, 2025
  4. Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive-exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to “pulse” at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential “Baroreceptor Hypothesis” predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Further, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations. 
    more » « less
  5. Our muscles are the primary means through which we affect the external world, and the sense of agency (SoA) over the action through those muscles is fundamental to our self-awareness. However, SoA research to date has focused almost exclusively on agency over action outcomes rather than over the musculature itself, as it was believed that SoA over the musculature could not be manipulated directly. Drawing on methods from human–computer interaction and adaptive experimentation, we use human-in-the-loop Bayesian optimization to tune the timing of electrical muscle stimulation so as to robustly elicit a SoA over electrically actuated muscle movements in male and female human subjects. We use time-resolved decoding of subjects' EEG to estimate the time course of neural activity which predicts reported agency on a trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts agency over muscle movements, suggesting that the “neural correlates of agency” may depend on the level of abstraction (i.e., direct sensorimotor feedback versus downstream consequences) most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to external input. SIGNIFICANCE STATEMENTThe sense of agency, the feeling of “I did that,” when directing one's own musculature is a core feature of human experience. We show that we can robustly manipulate the sense of agency over electrically actuated muscle movements, and we investigate the time course of neural activity that predicts the sense of agency over these actuated movements. We find evidence of two distinct neural processes: a transient sequence of patterns that begins in the early sensorineural response to muscle stimulation and a later, sustained signature of agency. These results shed light on the neural mechanisms by which we experience our movements as volitional. 
    more » « less
  6. null (Ed.)