skip to main content

Search for: All records

Creators/Authors contains: "Ohn-Bar, Eshed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the possibility of using a single monocular camera to forecast the time to collision between a suitcase-shaped robot being pushed by its user and other nearby pedestrians. We develop a purely image-based deep learning approach that directly estimates the time to collision without the need of relying on explicit geometric depth estimates or velocity information to predict future collisions. While previous work has focused on detecting immediate collision in the context of navigating Unmanned Aerial Vehicles, the detection was limited to a binary variable (i.e., collision or no collision). We propose a more fine-grained approach to collision forecasting by predicting the exact time to collision in terms of milliseconds, which is more helpful for collision avoidance in the context of dynamic path planning. To evaluate our method, we have collected a novel dataset of over 13,000 indoor video segments each showing a trajectory of at least one person ending in a close proximity (a near collision) with the camera mounted on a mobile suitcase-shaped platform. Using this dataset, we do extensive experimentation on different temporal windows as input using an exhaustive list of state-of-the-art convolutional neural networks (CNNs). Our results show that our proposed multi-stream CNN is themore »best model for predicting time to near-collision. The average prediction error of our time to near-collision is 0.75 seconds across the test videos. The project webpage can be found at https://aashi7.github.io/NearCollision.html.« less
  2. We explore the possibility of using a single monocular camera to forecast the time to collision between a suitcase-shaped robot being pushed by its user and other nearby pedestrians. We develop a purely image-based deep learning approach that directly estimates the time to collision without the need of relying on explicit geometric depth estimates or velocity information to predict future collisions. While previous work has focused on detecting immediate collision in the context of navigating Unmanned Aerial Vehicles, the detection was limited to a binary variable (i.e., collision or no collision). We propose a more fine-grained approach to collision forecasting by predicting the exact time to collision in terms of milliseconds, which is more helpful for collision avoidance in the context of dynamic path planning. To evaluate our method, we have collected a novel large-scale dataset of over 13,000 indoor video segments each showing a trajectory of at least one person ending in a close proximity (a near collision) with the camera mounted on a mobile suitcase-shaped platform. Using this dataset, we do extensive experimentation on different temporal windows as input using an exhaustive list of state-of-the-art convolutional neural networks (CNNs). Our results show that our proposed multi-stream CNN ismore »the best model for predicting time to near-collision. The average prediction error of our time to near collision is 0.75 seconds across our test environments.« less
  3. We study self-supervised adaptation of a robot's policy for social interaction, i.e., a policy for active communication with surrounding pedestrians through audio or visual signals. Inspired by the observation that humans continually adapt their behavior when interacting under varying social context, we propose Adaptive EXP4 (A-EXP4), a novel online learning algorithm for adapting the robot-pedestrian interaction policy. To address limitations of bandit algorithms in adaptation to unseen and highly dynamic scenarios, we employ a mixture model over the policy parameter space. Specifically, a Dirichlet Process Gaussian Mixture Model (DPMM) is used to cluster the parameters of sampled policies and maintain a mixture model over the clusters, hence effectively discovering policies that are suitable to the current environmental context in an unsupervised manner. Our simulated and real-world experiments demonstrate the feasibility of A-EXP4 in accommodating interaction with different types of pedestrians while jointly minimizing social disruption through the adaptation process. While the A-EXP4 formulation is kept general for application in a variety of domains requiring continual adaptation of a robot's policy, we specifically evaluate the performance of our algorithm using a suitcase-inspired assistive robotic platform. In this concrete assistive scenario, the algorithm observes how audio signals produced by the navigational systemmore »affect the behavior of pedestrians and adapts accordingly. Consequently, we find A-EXP4 to effectively adapt the interaction policy for gently clearing a navigation path in crowded settings, resulting in significant reduction in empirical regret compared to the EXP4 baseline.« less
  4. Navigation assistive technologies have been designed to support individuals with visual impairments during independent mobility by providing sensory augmentation and contextual awareness of their surroundings. Such information is habitually provided through predefned audio-haptic interaction paradigms. However, individual capabilities, preferences and behavior of people with visual impairments are heterogeneous, and may change due to experience, context and necessity. Therefore, the circumstances and modalities for providing navigation assistance need to be personalized to different users, and through time for each user. We conduct a study with 13 blind participants to explore how the desirability of messages provided during assisted navigation varies based on users' navigation preferences and expertise. The participants are guided through two different routes, one without prior knowledge and one previously studied and traversed. The guidance is provided through turn-by-turn instructions, enriched with contextual information about the environment. During navigation and follow-up interviews, we uncover that participants have diversifed needs for navigation instructions based on their abilities and preferences. Our study motivates the design of future navigation systems capable of verbosity level personalization in order to keep the users engaged in the current situational context while minimizing distractions.