skip to main content


Search for: All records

Creators/Authors contains: "Oleksy, Isabella A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 7, 2025
  2. LakeBeD-US: Ecology Edition is a harmonized lake water quality dataset containing time series and vertical profiles of 21 lakes in the United States monitored by long-term monitoring institutions. These institutions include the North Temperate Lakes Long-Term Ecological Research program (NTL-LTER), Niwot Ridge Long-Term Ecological Research program (NWT-LTER), National Ecological Observatory Network (NEON), and the Carey Lab at Virginia Tech as part of the Virginia Reservoirs Long-Term Research in Environmental Biology (LTREB) site in collaboration with the Western Virginia Water Authority. The data include depth-discrete observations of 17 water quality variables including temperature, dissolved oxygen, chemical properties, Secchi depth, and more. Observations are divided into data collected by automated sensors at a relatively high temporal frequency and manually sampled data at a relatively low temporal frequency. All data were collected in situ. The data are available as Apache Parquet files, and the included R scripts give guidance on how to utilize and query the dataset in R. LakeBeD-US: Ecology Edition is an ecological science-oriented companion to LakeBeD-US: Computer Science Edition. The Computer Science Edition is available on the Hugging Face Hub. 
    more » « less
  3. Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color. 
    more » « less