- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Amato, Christopher (2)
-
Katt, Sammie (2)
-
Nguyen, Hai (1)
-
Oliehoek, Frans (1)
-
Oliehoek, Frans A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While reinforcement learning (RL) has made great advances in scalability, exploration and partial observability are still active research topics. In contrast, Bayesian RL (BRL) provides a principled answer to both state estimation and the exploration-exploitation trade-off, but struggles to scale. To tackle this challenge, BRL frameworks with various prior assumptions have been proposed, with varied success. This work presents a representation-agnostic formulation of BRL under partial observability, unifying the previous models under one theoretical umbrella. To demonstrate its practical significance we also propose a novel derivation, Bayes-Adaptive Deep Dropout rl (BADDr), based on dropout networks. Under this parameterization, in contrast to previous work, the belief over the state and dynamics is a more scalable inference problem. We choose actions through Monte-Carlo tree search and empirically show that our method is competitive with state-of-the-art BRL methods on small domains while being able to solve much larger ones.more » « less
-
Katt, Sammie; Oliehoek, Frans A.; Amato, Christopher (, Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems)Model-based Bayesian Reinforcement Learning (BRL) provides a principled solution to dealing with the exploration-exploitation trade-off, but such methods typically assume a fully observable environments. The few Bayesian RL methods that are applicable in partially observable domains, such as the Bayes-Adaptive POMDP (BA-POMDP), scale poorly. To address this issue, we introduce the Factored BA-POMDP model (FBA-POMDP), a framework that is able to learn a compact model of the dynamics by exploiting the underlying structure of a POMDP. The FBA-POMDP framework casts the problem as a planning task, for which we adapt the Monte-Carlo Tree Search planning algorithm and develop a belief tracking method to approximate the joint posterior over the state and model variables. Our empirical results show that this method outperforms a number of BRL baselines and is able to learn efficiently when the factorization is known, as well as learn both the factorization and the model parameters simultaneously.more » « less
An official website of the United States government

Full Text Available