- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Arachchige, Indika U (1)
-
Lao, Ka Un (1)
-
Onukwughara, Chineme Jeanfrances (1)
-
Pate, David (1)
-
Spence, Griffin C (1)
-
Spera, Drew (1)
-
Villot, Corentin (1)
-
White, Daulton (1)
-
Özgür, Ümit (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Group IV alloy nanocrystals (NCs) are a class of direct energy gap semiconductors that show high elemental abundance, low to non-toxicity, and composition-tunable absorption and emission properties. These properties have distinguished Ge1-xSnx NCs as an intriguing material for near-infrared (IR) optical studies. Achieving a material with efficient visible emission requires a modified class of Group IV alloys and the computational studies suggest that this can be achieved with Ge1-x-ySiySnx NCs. Herein, we report a colloidal strategy for the synthesis of bulk-like (10.3 ± 2.5 – 25.5 ± 5.3 nm) and quantum-confined (3.2 ± 0.6 – 4.2 ± 1.1 nm) Ge1-x-ySiySnx alloys that show strong size confinement effects and composition-tunable visible to near IR absorption and emission properties. This synthesis produces a homogeneous alloy with diamond cubic Ge structure and tunable Si (0.9 – 16.1%) and Sn (1.8 – 14.9%) compositions, exceeding the equilibrium solubility of Sn (<1%) in crystalline Si and Ge. Raman spectra of Ge1-x-ySiySnx alloys show a prominent redshift of the Ge-Ge peak and the emergence of a Ge-Si peak with increasing Si/Sn, suggesting the growth of homogeneous alloys. The smaller Ge1-x-ySiySnx NCs exhibit absorption onsets from 1.21 to 1.94 eV for x = 1.8 – 6.8% and y = 0.9 – 16.1% compositions, which are blueshifted from those reported for Ge1-x-ySiySnx bulk alloy films and Ge1-xSnx alloy NCs, indicating the influence of Si incorporation and strong size confinement effects. Solid-state photoluminescence (PL) spectra reveal core-related PL maxima from 1.77 – 1.97 eV in agreement with absorption onsets, consistent with the energy gaps calculated for ~3–4 nm alloy NCs. With facile low-temperature solution synthesis and direct control over physical properties, this methodology presents a noteworthy advancement in the synthesis of bulk-like and quantum-confined Ge1-x-ySiySnx alloys as versatile materials for future optical and electronic studies.more » « lessFree, publicly-accessible full text available November 14, 2024