skip to main content

Search for: All records

Creators/Authors contains: "Ororbia, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience that can produce human-like behavior through reward-based learning. In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans through the systematic investigation of a visual-motor task that has been well-explored—that of intercepting a target moving over a ground plane. Previous research demonstrated that humans performing this task resorted to anticipatory changes in speed intended to compensate for semi-predictable changes in target speed later in the approach. To capture this behavior, our proposed “neural” AIF agent uses artificial neural networks to select actions on the basis of a very short term prediction of the information about the task environment that these actions would reveal along with a long-term estimate of the resulting cumulative expected free energy. Systematic variation revealed that anticipatory behavior emerged only when required by limitations on the agent's movement capabilities, and only when the agent was able to estimate accumulated free energy over sufficiently long durations into the future. In addition, we present a novel formulation of the prior mapping function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy/reward. Together, these results demonstrate the use of AIF as a plausible model of anticipatory visually guided behavior in humans. 
    more » « less
  2. In order to build more human-like cognitive agents, systems capable of detecting various human emotions must be designed to respond appropriately. Confusion, the combination of an emotional and cognitive state, is under-explored. In this paper, we build upon prior work to develop models that detect confusion from three modalities: video (facial features), audio (prosodic features), and text (transcribed speech features). Our research improves the data collection process by allowing for continuous (as opposed to discrete) annotation of confusion levels. We also craft models based on recurrent neural networks (RNNs) given their ability to predict sequential data. In our experiments, we find that text and video modalities are the most important in predicting confusion while the explored audio features are relatively unimportant predictors of confusion in our data. 
    more » « less