Unsupervised domain adaptation for semantic segmentation has been intensively studied due to the low cost of the pixel-level annotation for synthetic data. The most common approaches try to generate images or features mimicking the distribution in the target domain while preserving the semantic contents in the source domain so that a model can be trained with annotations from the latter. However, such methods highly rely on an image translator or feature extractor trained in an elaborated mechanism including adversarial training, which brings in extra complexity and instability in the adaptation process. Furthermore, these methods mainly focus on taking advantage of the labeled source dataset, leaving the unlabeled target dataset not fully utilized. In this paper, we propose a bidirectional style-induced domain adaptation method, called BiSIDA, that employs consistency regularization to efficiently exploit information from the unlabeled target domain dataset, requiring only a simple neural style transfer model. BiSIDA aligns domains by not only transferring source images into the style of target images but also transferring target images into the style of source images to perform high-dimensional perturbation on the unlabeled target images, which is crucial to the success in applying consistency regularization in segmentation tasks. Extensive experiments show that our BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks: GTA5-to-CityScapes and SYNTHIA-to-CityScapes. Code and pretrained style transfer model are available at: https://github.com/wangkaihong/BiSIDA.
more »
« less
This content will become publicly available on May 17, 2025
Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate. Segmentation models trained using supervised machine learning can excel at this task, their effectiveness is determined by the degree of overlap between the narrow distributions of image properties defined by the target dataset and highly specific training datasets, of which there are few. Attempts to broaden the distribution of existing eye image datasets through the inclusion of synthetic eye images have found that a model trained on synthetic images will often fail to generalize back to real-world eye images. In remedy, we use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data, and to prune the training dataset in a manner that maximizes distribution overlap. We demonstrate that our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
more »
« less
- Award ID(s):
- 2125362
- PAR ID:
- 10508041
- Publisher / Repository:
- Association for Computing Machinery
- Date Published:
- Journal Name:
- Proceedings of the ACM on Computer Graphics and Interactive Techniques
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2577-6193
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose to harness the potential of simulation for the semantic segmentation of real-world self-driving scenes in a domain generalization fashion. The segmentation network is trained without any data of target domains and tested on the unseen target domains. To this end, we propose a new approach of domain randomization and pyramid consistency to learn a model with high generalizability. First, we propose to randomize the synthetic images with the styles of real images in terms of visual appearances using auxiliary datasets, in order to effectively learn domain-invariant representations. Second, we further enforce pyramid consistency across different “stylized” images and within an image, in order to learn domaininvariant and scale-invariant features, respectively. Extensive experiments are conducted on the generalization from GTA and SYNTHIA to Cityscapes, BDDS and Mapillary; and our method achieves superior results over the stateof- the-art techniques. Remarkably, our generalization results are on par with or even better than those obtained by state-of-the-art simulation-to-real domain adaptation methods, which access the target domain data at training time.more » « less
-
The prediction of human shifts of attention is a widely-studied question in both behavioral and computer vision, especially in the context of a free viewing task. However, search behavior, where the fixation scanpaths are highly dependent on the viewer's goals, has received far less attention, even though visual search constitutes much of a person's everyday behavior. One reason for this is the absence of real-world image datasets on which search models can be trained. In this paper we present a carefully created dataset for two target categories, microwaves and clocks, curated from the COCO2014 dataset. A total of 2183 images were presented to multiple participants, who were tasked to search for one of the two categories. This yields a total of 16184 validated fixations used for training, making our microwave-clock dataset currently one of the largest datasets of eye fixations in categorical search. We also present a 40-image testing dataset, where images depict both a microwave and a clock target. Distinct fixation patterns emerged depending on whether participants searched for a microwave (n=30) or a clock (n=30) in the same images, meaning that models need to predict different search scanpaths from the same pixel inputs. We report the results of several state-of-the-art deep network models that were trained and evaluated on these datasets. Collectively, these datasets and our protocol for evaluation provide what we hope will be a useful test-bed for the development of new methods for predicting category-specific visual search behavior.more » « less
-
The prediction of human shifts of attention is a widely-studied question in both behavioral and computer vision, especially in the context of a free viewing task. However, search behavior, where the fixation scanpaths are highly dependent on the viewer’s goals, has received far less attention, even though visual search constitutes much of a person’s everyday behavior. One reason for this is the absence of real-world image datasets on which search models can be trained. In this paper we present a carefully created dataset for two target categories, microwaves and clocks, curated from the COCO2014 dataset. A total of 2183 images were presented to multiple participants, who were tasked to search for one of the two categories. This yields a total of 16184 validated fixations used for training, making our microwave-clock dataset currently one of the largest datasets of eye fixations in categorical search. We also present a 40-image testing dataset, where images depict both a microwave and a clock target. Distinct fixation patterns emerged depending on whether participants searched for a microwave (n=30) or a clock (n=30) in the same images, meaning that models need to predict different search scanpaths from the same pixel inputs. We report the results of several state-of-the-art deep network models that were trained and evaluated on these datasets. Collectively, these datasets and our protocol for evaluation provide what we hope will be a useful test-bed for the development of new methods for predicting category-specific visual search behavior.more » « less
-
Accurate semantic image segmentation from medical imaging can enable intelligent vision-based assistance in robot-assisted minimally invasive surgery. The human body and surgical procedures are highly dynamic. While machine-vision presents a promising approach, sufficiently large training image sets for robust performance are either costly or unavailable. This work examines three novel generative adversarial network (GAN) methods of providing usable synthetic tool images using only surgical background images and a few real tool images. The best of these three novel approaches generates realistic tool textures while preserving local background content by incorporating both a style preservation and a content loss component into the proposed multi-level loss function. The approach is quantitatively evaluated, and results suggest that the synthetically generated training tool images enhance UNet tool segmentation performance. More specifically, with a random set of 100 cadaver and live endoscopic images from the University of Washington Sinus Dataset, the UNet trained with synthetically generated images using the presented method resulted in 35.7% and 30.6% improvement over using purely real images in mean Dice coefficient and Intersection over Union scores, respectively. This study is promising towards the use of more widely available and routine screening endoscopy to preoperatively generate synthetic training tool images for intraoperative UNet tool segmentation.more » « less