skip to main content

Search for: All records

Creators/Authors contains: "Ortiz, Brenden R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    Kagome metals AV3Sb5(A = K, Cs, Rb) provide a rich platform for intertwined orders, where evidence for time-reversal symmetry breaking, likely due to the long-sought loop currents, has emerged in STM and muon spin relaxation experiments. An isotropic component in the spontaneous optical rotation has also been reported and was interpreted as the magneto-optic Kerr effect. Intriguingly, the observed rotations differ by five orders of magnitude between different wavelengths and samples, suggesting more intricate physics. Here we report optical rotation and polar Kerr measurements in CsV3Sb5crystals at the same wavelength. We observe large isotropic components of 1 milliradian in the optical rotation that do not respond to applied magnetic fields, while the spontaneous Kerr signal is less than 20 nanoradians. Our results prove unambiguously that the reported isotropic rotation is not from time-reversal symmetry breaking but represents the long-sought specular optical rotation and indicates a new intertwined order.

    more » « less
  3. Free, publicly-accessible full text available September 1, 2024
  4. Abstract

    The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two ‘domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5−xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors.

    more » « less