skip to main content

Search for: All records

Creators/Authors contains: "Ostroverkhova, Oksana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 10, 2023
  2. Free, publicly-accessible full text available December 16, 2022
  3. Free, publicly-accessible full text available December 16, 2022
  4. Free, publicly-accessible full text available January 13, 2023
  5. ABSTRACT We present a study of optical and electronic properties of solutions and films based on the fungi-derived pigment xylindein, extracted from decaying wood and processed without and with a simple purification step (“ethanol wash”). The “post-wash” xylindein solutions exhibited considerably lower absorption in the ultraviolet spectral range and dramatically reduced photoluminescence below 600 nm, due to removal of contaminants most likely to be fungal secondary metabolites. The “post-wash” xylindein-based films were characterized by two orders of magnitude higher charge carrier mobilities as compared to “pre-wash” samples. This underlines the importance of minimizing contaminants that disrupt the conductive xylindein networkmore »in xylindein-based electronic devices.« less
  6. ABSTRACT We present on the optical and electronic properties of a fungi-derived pigment xylindein for potential use in (opto)electronic applications. Optical absorption spectra in solutions of various concentrations and in film are compared and are consistent with aggregate formation in concentrated solutions and films. In order to improve film morphology obtained by solution deposition techniques, an amorphous polymer PMMA was introduced to xylindein to form xylindein:PMMA blends. Current-voltage characteristics and hole mobilities extracted from space-charge limited currents were found to be comparable between pristine xylindein and xylindein:PMMA films. Side by side comparison of the photoresponse of pristine xylindein and xylindein:PMMAmore »films at 633 nm revealed an increase in the photosensitivity in xylindein:PMMA films due to the improved morphology favouring enhanced charge generation.« less