skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pallin, Logan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundDespite exhibiting one of the longest migrations in the world, half of the humpback whale migratory cycle has remained unexamined. Until now, no study has provided a continuous description of humpback whale migratory behavior from a feeding ground to a calving ground. We present new information on satellite-derived offshore migratory movements of 16 Breeding Stock G humpback whales from Antarctic feeding grounds to South American calving grounds. Satellite locations were used to demonstrate migratory corridors, while the impact of departure date on migration speed was assessed using a linear regression. A Bayesian hierarchical state–space animal movement model (HSSM) was utilized to investigate the presence of Area Restricted Search (ARS) en route. Results35,642 Argos locations from 16 tagged whales from 2012 to 2017 were collected. The 16 whales were tracked for a mean of 38.5 days of migration (range 10–151 days). The length of individually derived tracks ranged from 645 to 6381 km. Humpbacks were widely dispersed geographically during the initial and middle stages of their migration, but convened in two convergence regions near the southernmost point of Chile as well as Peru’s Illescas Peninsula. The state–space model showed almost no instances of ARS along the migratory route. The linear regression assessing whether departure date affected migration speed showed suggestive but inconclusive support for a positive trend between the two variables. Results suggestive of stratification by sex and reproductive status were found for departure date and route choice. ConclusionsThis multi-year study sets a baseline against which the effects of climate change on humpback whales can be studied across years and conditions and provides an excellent starting point for the investigation into humpback whale migration. 
    more » « less
  2. Abstract Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow. 
    more » « less
  3. Abstract The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human‐induced changes. Understanding how climate‐mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8‐year dataset (2013–2020), we show that inter‐annual humpback whale pregnancy rates, as determined from skin‐blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter‐annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region. 
    more » « less