skip to main content

Search for: All records

Creators/Authors contains: "Pan, Cunhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optimally extracting the advantages available from reconfigurable intelligent surfaces (RISs) in wireless communications systems requires estimation of the channels to and from the RIS. The process of determining these channels is complicated when the RIS is composed of passive elements without any sensing or data processing capabilities, and thus, the channels must be estimated indirectly by a noncolocated device, typically a controlling base station (BS). In this article, we examine channel estimation for passive RIS-based systems from a fundamental viewpoint. We study various possible channel models and the identifiability of the models as a function of the available pilot data and behavior of the RIS during training. In particular, we will consider situations with and without line-of-sight propagation, single-antenna and multi-antenna configurations for the users and BS, correlated and sparse channel models, single-carrier and wideband orthogonal frequency-division multiplexing (OFDM) scenarios, availability of direct links between the users and BS, exploitation of prior information, as well as a number of other special cases. We further conduct simulations of representative algorithms and comparisons of their performance for various channel models using the relevant Cramér-Rao bounds. 
    more » « less
  2. null (Ed.)
    The implementation of full-duplex (FD) theoretically doubles the spectral efficiency of cellular communications. We propose a multiuser FD cellular network relying on an intelligent reflecting surface (IRS). The IRS is deployed to cover a dead zone while suppressing user-side self-interference (SI) and co-channel interference (CI) by carefully tuning the phase shifts of its massive low-cost passive reflection elements. To ensure network fairness, we aim to maximize the weighted minimum rate (WMR) of all users by jointly optimizing the precoding matrix of the base station (BS) and the reflection coefficients of the IRS. Specifically, we propose a low-complexity minorization-maximization (MM) algorithm for solving the subproblems of designing the precoding matrix and the reflection coefficients, respectively. Simulation results confirm the convergence and efficiency of our proposed algorithm, and validate the advantages of introducing IRS to realize FD cellular communications. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. This paper aims to realize a new multiple access technique based on recently proposed millimeter- wave reconfigurable antenna architectures. To this end, first we show that integration of the existing reconfigurable antenna systems with the well-known non-orthogonal multiple access (NOMA) technique causes a significant degradation in sum rate due to the inevitable power division in reconfigurable antennas. To circumvent this fundamental limit, a new multiple access technique is proposed. The technique which is called reconfigurable antenna multiple access (RAMA) transmits only each user's intended signal at the same time/frequency/code, which makes RAMA an inter-user interference-free technique. Two different cases are considered, i.e., RAMA with partial and full channel state information (CSI). In the first case, CSI is not required and only the direction of arrival for a specific user is used. Our analytical results indicate that with partial CSI and for symmetric channels, RAMA outperforms NOMA in terms of sum rate. Further, the analytical result indicates that RAMA for asymmetric channels achieves better sum rate than NOMA when less power is assigned to users that experience better channel quality. In the second case, RAMA with full CSI allocates optimal power to each user which leads to higher achievable rates compared to NOMA for both symmetric and asymmetric channels. The numerical computations demonstrate the analytical findings. 
    more » « less