skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Channel Estimation With Reconfigurable Intelligent Surfaces--A General Framework
Optimally extracting the advantages available from reconfigurable intelligent surfaces (RISs) in wireless communications systems requires estimation of the channels to and from the RIS. The process of determining these channels is complicated when the RIS is composed of passive elements without any sensing or data processing capabilities, and thus, the channels must be estimated indirectly by a noncolocated device, typically a controlling base station (BS). In this article, we examine channel estimation for passive RIS-based systems from a fundamental viewpoint. We study various possible channel models and the identifiability of the models as a function of the available pilot data and behavior of the RIS during training. In particular, we will consider situations with and without line-of-sight propagation, single-antenna and multi-antenna configurations for the users and BS, correlated and sparse channel models, single-carrier and wideband orthogonal frequency-division multiplexing (OFDM) scenarios, availability of direct links between the users and BS, exploitation of prior information, as well as a number of other special cases. We further conduct simulations of representative algorithms and comparisons of their performance for various channel models using the relevant Cramér-Rao bounds.  more » « less
Award ID(s):
2107182 2030029
PAR ID:
10341042
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE
ISSN:
0018-9219
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a time-division duplex (TDD) multiple antenna system the channel state information (CSI) can be estimated using reverse training. In multicell multiuser massive MIMO systems, pilot contamination degrades CSI estimation performance and adversely affects massive MIMO system performance. In this paper we consider a subspace-based semi-blind approach where we have training data as well as information bearing data from various users (both in-cell and neighboring cells) at the base station (BS). Existing subspace approaches assume that the interfering users from neighboring cells are always at distinctly lower power levels at the BS compared to the in-cell users. In this paper we do not make any such assumption. Unlike existing approaches, the BS estimates the channels of all users: in-cell and significant neighboring cell users, i.e., ones with comparable power levels at the BS. We exploit both subspace method using correlation as well as blind source separation using higher-order statistics. The proposed approach is illustrated via simulation examples. 
    more » « less
  2. In this paper, we investigate the potential of employing reconfigurable intelligent surface (RIS) in integrated sensing and communication (ISAC) systems. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multi-user multi-input single-output (MU-MISO) communication and target detection. We aim to jointly design the transmit beamforming and receive filter of the BS, and the reflection coefficients of the RIS to maximize the sum-rate of the communication users, while satisfying a worst-case radar output signal-to-noise ratio (SNR), the transmit power constraint, and the unit modulus property of the reflecting coefficients. An efficient iterative algorithm based on fractional programming (FP), majorization-minimization (MM), and alternative direction method of multipliers (ADMM) is developed to solve the complicated non-convex problem. Simulation results verify the advantage of the proposed RIS-assisted ISAC scheme and the effectiveness of the developed algorithm. 
    more » « less
  3. In this work, we develop a two time-scale deep learning approach for beamforming and phase shift (BF-PS) design in time-varying RIS-aided networks. In contrast to most existing works that assume perfect CSI for BF-PS design, we take into account the cost of channel estimation and utilize Long Short-Term Memory (LSTM) networks to design BF-PS from limited samples of estimated channel CSI. An LSTM channel extrapolator is designed first to generate high resolution estimates of the cascaded BS-RIS-user channel from sampled signals acquired at a slow time scale. Subsequently, the outputs of the channel extrapolator are fed into an LSTM-based two stage neural network for the joint design of BF-PS at a fast time scale of per coherence time. To address the critical issue that training overhead increases linearly with the number of RIS elements, we consider various pilot structures and sampling patterns in time and space to evaluate the efficiency and sum-rate performance of the proposed two time-scale design. Our results show that the proposed two time-scale design can achieve good spectral efficiency when taking into account the pilot overhead required for training. The proposed design also outperforms a direct BF-PS design that does not employ a channel extrapolator. These demonstrate the feasibility of applying RIS in time-varying channels with reasonable pilot overhead. 
    more » « less
  4. In MIMO communications, it is expensive and sometimes impossible to obtain timely channel state information at transmitter (CSIT) when the number of antennas is large. Furthermore, if the carrier frequency is high, the variation of the phases of the channel state information is significant with small movement in the channels. On the other hand, spatial signal path directions and the amplitudes of path gains vary slowly. We propose a beam network methodology for multi-antenna communication using such partial CSIT as directions and amplitudes instead of the conventional approach that employs full CSIT. Three representative problems are presented to demonstrate the simplicity and performance of the methodology. These include the single-user MIMO channel, a MIMO interference channel, and a multicast network via a reconfigurable intelligent surface (RIS). In particular, we see that the usual high complexity of RIS state design can be simplified to choosing states to connect an incoming beam to outgoing beams. 
    more » « less
  5. Non-orthogonal multiple access (NOMA) has become a promising technology for next-generation wireless communications systems due to its capability to provide access for multiple users on the same resource. In this paper, we consider an uplink power-domain NOMA system aided by a reconfigurable intelligent surface (RIS) in the presence of a jammer that aims to maximize its interference on the base station (BS) uplink receiver. We consider two kinds of RISs, a regular RIS whose elements can only change the phase of the incoming wave, and an RIS whose elements can also attenuate the incoming wave. Our aim is to minimize the total power transmitted by the user terminals under quality-of-service constraints by controlling both the propagation from the users and the jammer to the BS with help of the RIS. The resulting objective function and constraints are both non-linear and non-convex, so we address this problem using numerical optimization. Our numerical results show that the RIS can help to dramatically reduce the per user required transmit power in an interference-limited scenario. 
    more » « less