skip to main content


Search for: All records

Creators/Authors contains: "Pan, Jianping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 4, 2025
  2. For each fully commutative permutation, we construct a “boolean core,” which is the maximal boolean permutation in its principal order ideal under the right weak order. We partition the set of fully commutative permutations into the recently defined crowded and uncrowded elements, distinguished by whether or not their RSK insertion tableaux satisfy a sparsity condition. We show that a fully commutative element is uncrowded exactly when it shares the RSK insertion tableau with its boolean core. We present the dynamics of the right weak order on fully commutative permutations, with particular interest in when they change from uncrowded to crowded. In particular, we use consecutive permutation patterns and descents to characterize the minimal crowded elements under the right weak order.

     
    more » « less
    Free, publicly-accessible full text available October 6, 2024
  3. Free, publicly-accessible full text available December 15, 2024
  4. Abstract Whereas set-valued tableaux are the combinatorial objects associated to stable Grothendieck polynomials, hook-valued tableaux are associated with stable canonical Grothendieck polynomials. In this paper, we define a novel uncrowding algorithm for hook-valued tableaux. The algorithm “uncrowds” the entries in the arm of the hooks, and yields a set-valued tableau and a column-flagged increasing tableau. We prove that our uncrowding algorithm intertwines with crystal operators. An alternative uncrowding algorithm that “uncrowds” the entries in the leg instead of the arm of the hooks is also given. As an application of uncrowding, we obtain various expansions of the canonical Grothendieck polynomials. 
    more » « less
  5. null (Ed.)

    With the popularity of the Internet, traditional offline resource allocation has evolved into a new form, called online resource allocation. It features the online arrivals of agents in the system and the real-time decision-making requirement upon the arrival of each online agent. Both offline and online resource allocation have wide applications in various real-world matching markets ranging from ridesharing to crowdsourcing. There are some emerging applications such as rebalancing in bike sharing and trip-vehicle dispatching in ridesharing, which involve a two-stage resource allocation process. The process consists of an offline phase and another sequential online phase, and both phases compete for the same set of resources. In this paper, we propose a unified model which incorporates both offline and online resource allocation into a single framework. Our model assumes non-uniform and known arrival distributions for online agents in the second online phase, which can be learned from historical data. We propose a parameterized linear programming (LP)-based algorithm, which is shown to be at most a constant factor of 1/4 from the optimal. Experimental results on the real dataset show that our LP-based approaches outperform the LP-agnostic heuristics in terms of robustness and effectiveness.

     
    more » « less
  6. We introduce a type $A$ crystal structure on decreasing factorizations of fully-commu\-tative elements in the 0-Hecke monoid which we call $\star$-crystal. This crystal is a $K$-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the $\star$-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators. 
    more » « less
  7. We introduce a type A crystal structure on decreasing factorizations on 321-avoiding elements in the 0-Hecke monoid which we call *-crystal. This crystal is a K-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the *-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators. 
    more » « less
  8. We introduce a type A crystal structure on decreasing factorizations on 321-avoiding elements in the 0-Hecke monoid which we call *-crystal. This crystal is a K-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the *-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators. 
    more » « less