skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncrowding Algorithm for Hook-Valued Tableaux
Abstract Whereas set-valued tableaux are the combinatorial objects associated to stable Grothendieck polynomials, hook-valued tableaux are associated with stable canonical Grothendieck polynomials. In this paper, we define a novel uncrowding algorithm for hook-valued tableaux. The algorithm “uncrowds” the entries in the arm of the hooks, and yields a set-valued tableau and a column-flagged increasing tableau. We prove that our uncrowding algorithm intertwines with crystal operators. An alternative uncrowding algorithm that “uncrowds” the entries in the leg instead of the arm of the hooks is also given. As an application of uncrowding, we obtain various expansions of the canonical Grothendieck polynomials.  more » « less
Award ID(s):
2053350 1760329
PAR ID:
10325534
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annals of Combinatorics
Volume:
26
Issue:
1
ISSN:
0218-0006
Page Range / eLocation ID:
261 to 301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus of linear series with special vanishing at up to two marked points. When the Brill–Noether number $$\rho $$ is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when $$\rho =1$$, we recover the formulas of Eisenbud-Harris, Pirola, and Chan–Martín–Pflueger–Teixidor for the arithmetic genus of a Brill–Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the $$K$$-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux. 
    more » « less
  2. Pipe dreams and bumpless pipe dreams for vexillary permutations are each known to be in bijection with certain semistandard tableaux via maps due to Lenart and Weigandt, respectively. Recently, Gao and Huang have defined a bijection between the former two sets. In this note we show for vexillary permutations that the Gao-Huang bijection preserves the associated tableaux, giving a new proof of Lenart's result. Our methods extend to give a recording tableau for any bumpless pipe dream. 
    more » « less
  3. This paper considers generalizations of certain arithmetic complexes appearing in the work of Raicu and VandeBogert in connection with the study of stable sheaf cohomology on flag varieties. Defined over the ring of integer valued polynomials, we prove an isomorphism of these complexes as conjectured by Gao, Raicu, and VandeBogert. In particular, this shows that a previously made identification between the stable sheaf cohomology of hook and two column partition Schur functors applied to the cotangent sheaf of projective space can be made to be uniform with respect to these complexes. These results are extended to the projective space defined over the integers. 
    more » « less
  4. Abstract Grothendieck polynomials were introduced by Lascoux and Schützenberger and play an important role in K-theoretic Schubert calculus. In this paper, we give a new definition of double stable Grothendieck polynomials based on an iterated residue operation. We illustrate the power of our definition by calculating the Grothendieck expansion of K-theoretic Thom polynomials of $${\mathcal {A}}_{2}$$ singularities. We present this expansion in two versions: one displays its stabilization property, while the other displays its expected finiteness property. 
    more » « less
  5. We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions $v,w$$ -- {\it biaxial double} $$(\beta,q)$$-{\it Grothendieck polynomials} -- which specialize at $$q=0$ and $v=1$ to double $$\beta$$-Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in $$n$$ pairs of variables is a Drinfeld twist of the $$U_q(\widehat{\mathfrak{sl}}_{n+1})$$ $$R$$-matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double $$\beta$$-Grothendieck polynomials and dual double $$\beta$$-Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin-Kirillov's Cauchy identity for $$\beta$$-Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double $$\beta$$-Grothendieck polynomials, and prove a new branching rule for double $$\beta$$-Grothendieck polynomials. 
    more » « less