We introduce a type A crystal structure on decreasing factorizations on 321-avoiding elements in the 0-Hecke monoid which we call *-crystal. This crystal is a K-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the *-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.
more »
« less
Uncrowding Algorithm for Hook-Valued Tableaux
Abstract Whereas set-valued tableaux are the combinatorial objects associated to stable Grothendieck polynomials, hook-valued tableaux are associated with stable canonical Grothendieck polynomials. In this paper, we define a novel uncrowding algorithm for hook-valued tableaux. The algorithm “uncrowds” the entries in the arm of the hooks, and yields a set-valued tableau and a column-flagged increasing tableau. We prove that our uncrowding algorithm intertwines with crystal operators. An alternative uncrowding algorithm that “uncrowds” the entries in the leg instead of the arm of the hooks is also given. As an application of uncrowding, we obtain various expansions of the canonical Grothendieck polynomials.
more »
« less
- PAR ID:
- 10325534
- Date Published:
- Journal Name:
- Annals of Combinatorics
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 0218-0006
- Page Range / eLocation ID:
- 261 to 301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a type A crystal structure on decreasing factorizations on 321-avoiding elements in the 0-Hecke monoid which we call *-crystal. This crystal is a K-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the *-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.more » « less
-
We introduce a type $$A$$ crystal structure on decreasing factorizations of fully-commu\-tative elements in the 0-Hecke monoid which we call $$\star$-crystal. This crystal is a $$K$$-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the $$\star$$-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.more » « less
-
Abstract We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus of linear series with special vanishing at up to two marked points. When the Brill–Noether number $$\rho $$ is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when $$\rho =1$$, we recover the formulas of Eisenbud-Harris, Pirola, and Chan–Martín–Pflueger–Teixidor for the arithmetic genus of a Brill–Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the $$K$$-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux.more » « less
-
Pipe dreams and bumpless pipe dreams for vexillary permutations are each known to be in bijection with certain semistandard tableaux via maps due to Lenart and Weigandt, respectively. Recently, Gao and Huang have defined a bijection between the former two sets. In this note we show for vexillary permutations that the Gao-Huang bijection preserves the associated tableaux, giving a new proof of Lenart's result. Our methods extend to give a recording tableau for any bumpless pipe dream.more » « less
An official website of the United States government

