Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Molecular interspecies dialogue between leguminous plants and nitrogen-fixing rhizobia results in the development of symbiotic root nodules. This is initiated by several nodulation-related receptors present on the surface of root hair epidermal cells. We have shown previously that specific subunits of heterotrimeric G-proteins and their associated regulator of G-protein signaling (RGS) proteins act as molecular links between the receptors and downstream components during nodule formation in soybeans. Nod factor receptor 1 (NFR1) interacts with and phosphorylates RGS proteins to regulate the G-protein cycle. Symbiosis receptor-like kinases (SymRK) phosphorylate Gα to make it inactive and unavailable for Gβγ. We now show that like NFR1, SymRK also interacts with the RGS proteins to phosphorylate them. Phosphorylated RGS has higher activity for accelerating guanosine triphosphate (GTP) hydrolysis by Gα, which favors conversion of active Gα to its inactive form. Phosphorylation of RGS proteins is physiologically relevant, as overexpression of a phospho-mimic version of the RGS protein enhances nodule formation in soybean. These results reveal an intricate fine-tuning of the G-protein signaling during nodulation, where a negative regulator (Gα) is effectively deactivated by RGS due to the concerted efforts of several receptor proteins to ensure adequate nodulation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.more » « less
-
Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.more » « less
-
Abstract The vascular plant-specific, cysteine-rich type III Gγ proteins, which are integral components of the heterotrimeric G-protein complex, play crucial roles in regulating a multitude of plant processes, including those related to crop yield and responses to abiotic stresses. The presence of multiple copies of type III Gγ proteins in most plants and a propensity of the presence of specific truncated alleles in many cultivated crops present an ambiguous picture of their roles in modulating specific responses. AGG3 is a canonical type III Gγ protein of Arabidopsis, and its overexpression in additional model crops offers the opportunity to directly evaluate the effects of protein expression levels on plant phenotypes. We have shown that AGG3 overexpression in the monocot model Setaria viridis leads to an increase in seed yield. In this study, we have investigated the response of the S. viridis plants overexpressing AGG3 to heat stress (HS), one of the most important abiotic stresses affecting crops worldwide. We show that a short span of HS at a crucial developmental time point has a significant effect on plant yield in the later stages. We also show that plants with higher levels of AGG3 are more tolerant to HS. This is attributed to an altered regulation of stress-responsive genes and improved modulation of the photosynthetic efficiency during the stress. Overall, our results confirm that AGG3 plays a crucial role in regulating plant responses to unfavorable environmental conditions and may contribute positively to avoiding crop yield losses.more » « less
-
Abstract Plants perceive a multitude of environmental signals and stresses, and integrate their response to them in ways that culminate in modified phenotypes, optimized for plant survival. This ability of plants, known as phenotypic plasticity, is found throughout evolution, in all plant lineages. For any given environment, the specifics of the response to a particular signal may vary depending on the plants’ unique physiology and ecological niche. The bryophyte lineage, including mosses, which diverged from the vascular plants ~450–430 million years ago, represent a unique ecological and phylogenetic group in plant evolution. Several aspects of the moss life cycle, their morphology including the presence of specialized tissue types and distinct anatomical features, gene repertoires and networks, as well as the habitat differ significantly from those of vascular plants. To evaluate the outcomes of these differences, we explore the phenotypic responses of mosses to environmental signals such as light, temperature, CO2, water, nutrients, and gravity, and compare those with what is known in vascular plants. We also outline knowledge gaps and formulate testable hypotheses based on the contribution of anatomical and molecular factors to specific phenotypic responses.more » « less
-
Summary Mosses hold a unique position in plant evolution and are crucial for protecting natural, long‐term carbon storage systems such as permafrost and bogs. Due to small stature, mosses grow close to the soil surface and are exposed to high levels of CO2, produced by soil respiration. However, the impact of elevated CO2(eCO2) levels on mosses remains underexplored.We determined the growth responses of the mossPhyscomitrium patensto eCO2in combination with different nitrogen levels and characterized the underlying physiological and metabolic changes.Three distinct growth characteristics, an early transition to caulonema, the development of longer, highly pigmented rhizoids, and increased biomass, define the phenotypic responses ofP. patensto eCO2. Elevated CO2impacts growth by enhancing the level of a sugar signaling metabolite, T6P. The quantity and form of nitrogen source influences these metabolic and phenotypic changes. Under eCO2,P. patensexhibits a diffused growth pattern in the presence of nitrate, but ammonium supplementation results in dense growth with tall gametophores, demonstrating high phenotypic plasticity under different environments.These results provide a framework for comparing the eCO2responses ofP. patenswith other plant groups and provide crucial insights into moss growth that may benefit climate change models.more » « less
An official website of the United States government
