skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pandurangan, Gopal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bonomi, Silvia; Galletta, Letterio; Rivière, Etienne; Schiavoni, Valerio (Ed.)
    It has been shown that one can design distributed algorithms that are (nearly) singularly optimal, meaning they simultaneously achieve optimal time and message complexity (within polylogarithmic factors), for several fundamental global problems such as broadcast, leader election, and spanning tree construction, under the KT₀ assumption. With this assumption, nodes have initial knowledge only of themselves, not their neighbors. In this case the time and message lower bounds are Ω(D) and Ω(m), respectively, where D is the diameter of the network and m is the number of edges, and there exist (even) deterministic algorithms that simultaneously match these bounds. On the other hand, under the KT₁ assumption, whereby each node has initial knowledge of itself and the identifiers of its neighbors, the situation is not clear. For the KT₁ CONGEST model (where messages are of small size), King, Kutten, and Thorup (KKT) showed that one can solve several fundamental global problems (with the notable exception of BFS tree construction) such as broadcast, leader election, and spanning tree construction with Õ(n) message complexity (n is the network size), which can be significantly smaller than m. Randomization is crucial in obtaining this result. While the message complexity of the KKT result is near-optimal, its time complexity is Õ(n) rounds, which is far from the standard lower bound of Ω(D). An important open question is whether one can achieve singular optimality for the above problems in the KT₁ CONGEST model, i.e., whether there exists an algorithm running in Õ(D) rounds and Õ(n) messages. Another important and related question is whether the fundamental BFS tree construction can be solved with Õ(n) messages (regardless of the number of rounds as long as it is polynomial in n) in KT₁. In this paper, we show that in the KT₁ LOCAL model (where message sizes are not restricted), singular optimality is achievable. Our main result is that all global problems, including BFS tree construction, can be solved in Õ(D) rounds and Õ(n) messages, where both bounds are optimal up to polylogarithmic factors. Moreover, we show that this can be achieved deterministically. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026
  2. Free, publicly-accessible full text available January 8, 2026
  3. Ragusa, Maria Alessandra (Ed.)
    We study scheduling mechanisms that explore the trade-off between containing the spread of COVID-19 and performing in-person activity in organizations. Our mechanisms, referred to as group scheduling , are based on partitioning the population randomly into groups and scheduling each group on appropriate days with possible gaps (when no one is working and all are quarantined). Each group interacts with no other group and, importantly, any person who is symptomatic in a group is quarantined. We show that our mechanisms effectively trade-off in-person activity for more effective control of the COVID-19 virus spread. In particular, we show that a mechanism which partitions the population into two groups that alternatively work in-person for five days each, flatlines the number of COVID-19 cases quite effectively, while still maintaining in-person activity at 70% of pre-COVID-19 level. Other mechanisms that partitions into two groups with less continuous work days or more spacing or three groups achieve even more aggressive control of the virus at the cost of a somewhat lower in-person activity (about 50%). We demonstrate the efficacy of our mechanisms by theoretical analysis and extensive experimental simulations on various epidemiological models based on real-world data. 
    more » « less
  4. null (Ed.)
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds. 
    more » « less