Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present the design of a portable coronagraph, CATEcor (where CATE stands for Continental-America Telescope Eclipse), that incorporates a novel “shaded-truss” style of external occultation and serves as a proof-of-concept for that family of coronagraphs. The shaded-truss design style has the potential for broad application in various scientific settings. We conceived CATEcor itself as a simple instrument to observe the corona during the darker skies available during a partial solar eclipse, or for students or interested amateurs to detect the corona under ideal noneclipsed conditions. CATEcor is therefore optimized for simplicity and accessibility to the public. It is implemented using an existing dioptric telescope and an adapter rig that mounts in front of the objective lens, restricting the telescope aperture and providing external occultation. The adapter rig, including occulter, is fabricated using fusion deposition modeling (FDM; colloquially “3D printing”), greatly reducing cost. The structure is designed to be integrated with moderate care and may be replicated in a university or amateur setting. While CATEcor is a simple demonstration unit, the design concept, process, and trades are useful for other more sophisticated coronagraphs in the same general family, which might operate under normal daytime skies outside the annular-eclipse conditions used for CATEcor.more » « less
-
We present results of a dual eclipse expedition to observe the solar corona from two sites during the annular solar eclipse of 14 October 2023 using a novel coronagraph designed to be accessible for amateurs and students to build and deploy. The coronagraph (CATEcor) builds on the standardized eclipse observing equipment developed for the Citizen CATE 2024 experiment. The observing sites were selected for likelihood of clear observations, for historic relevance (near the Climax site in the Colorado Rocky Mountains), and for centrality to the annular eclipse path (atop Sandia Peak above Albuquerque, New Mexico). The novel portion of CATEcor is an external occulter assembly that slips over the front of a conventional dioptric telescope, forming ashaded-trussexternally occulted coronagraph. CATEcor is specifically designed to be easily constructed in a garage or “makerspace” environment. We successfully observed some bright features in the solar corona to an altitude of approximately 2.25 R⊙during the annular phases of the eclipse. Future improvements to the design, in progress now, will reduce both stray light and image artifacts; our objective is to develop a design that can be operated successfully by amateur astronomers at sufficient altitude even without the darkened skies of a partial or annular eclipse.more » « less
-
Abstract The broadband solar K-corona is linearly polarized due to Thomson scattering. Various strategies have been used to represent coronal polarization. Here, we present a new way to visualize the polarized corona, using observations from the 2023 April 20 total solar eclipse in Australia in support of the Citizen CATE 2024 project. We convert observations in the common four-polarizer orthogonal basis (0°, 45°, 90°, & 135°) to −60°, 0°, and +60° (MZP) polarization, which is homologous toR, G, Bcolor channels. The unique image generated provides some sense of how humans might visualize polarization if we could perceive it in the same way we perceive color.more » « less
-
The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory/(SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.more » « less
An official website of the United States government
