skip to main content

Search for: All records

Creators/Authors contains: "Patterson, Albert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research studied the effect of channel roughness on micro-droplet distributions in internal minimum quantity lubrication for effective machining. Mixtures of different oils and air were flown though internal channels with simulated different roughness: as fabricated, partially threaded, and fully threaded. The airborne droplets were collected, analyzed, and compared with simulated results by computational fluid dynamics. For low-viscous lubricant, the rough channel surface helped to break large droplets in the boundary layer into smaller droplets and reintroduce them into the main downstream flow. The opposite trend was found for the higher viscous lubricant. The study also performed chemical etching to roughen selected surfaces of carbide cutting tools. The synergy of hand and ultrasonic agitation successfully roughened a carbide surface within twelve minutes. Scanning electron microscopy examination showed deep etching that removed all grinding marks on a WC–Co cutting tool surface. 
    more » « less
  2. A new attitude control system called Multifunctional Structures for Attitude Control (MSAC) is explored in this paper. This system utilizes deployable structures to provide fine pointing and large slewing capabilities for spacecraft. These deploy- able structures utilize distributed actuation, such as piezoelectric strain actuators, to control flexible structure vibration and motion. A related type of intelligent structure has been introduced recently for precision spacecraft attitude control, called Strain Actuated Solar Arrays (SASA). MSAC extends the capabilities of the SASA concept such that arbitrarily large angle slewing can be achieved at relatively fast rates, thereby providing a means to replace Reaction Wheel Assemblies and Control Moment Gyroscopes. MSAC utilizes actuators bonded to deployable panels, such as solar arrays or other structural appendages, and bends the panels to use inertial coupling for small-amplitude, high-precision attitude control and active damping. In addition to presenting the concept, we introduce the operational principles for MSAC and develop a lumped low-fidelity Hardware-in-the-Loop (HIL) prototype and testbed to explore them. Some preliminary experimental results obtained using this prototype provided valuable insight into the design and performance of this new class of attitude control systems. Based on these results and developed principles, we have developed useful lumped-parameter models to use in further system refinement. 
    more » « less