- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Miller, Jeremy (5)
-
Patzt, Peter (5)
-
Kupers, Alexander (1)
-
Nagpal, Rohit (1)
-
Putman, Andrew (1)
-
Wilson, Jennifer C (1)
-
Wilson, Jennifer C. H. (1)
-
Wilson, Jennifer C.H. (1)
-
Yasaki, Dan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kupers, Alexander; Miller, Jeremy; Patzt, Peter; Wilson, Jennifer C (, International Mathematics Research Notices)
-
Miller, Jeremy; Nagpal, Rohit; Patzt, Peter (, Compositio Mathematica)We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $$\mathbf{SL}_{n}(\mathbb{Z})$$ . This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $$\mathbf{SL}_{n}(K)$$ for $$K$$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $$\mathbf{SL}_{n}(\mathbb{Z})$$ .more » « less
-
Central stability for the homology of congruence subgroups and the second homology of Torelli groupsMiller, Jeremy; Patzt, Peter; Wilson, Jennifer C.H. (, Advances in Mathematics)
-
Miller, Jeremy; Patzt, Peter; Wilson, Jennifer C. H.; Yasaki, Dan (, Journal of Topology)