Borel–Serre proved that SL_n(Z) is a virtual duality group of dimension (n choose 2) and the Steinberg module St_n(Q) is its dualizing module. This module is the top-dimensional homology group of the Tits building associated to SL_n(Q). We determine the “relations among the relations” of this Steinberg module. That is, we construct an explicit partial resolution of length two of the SL_n(Z)-module St_n(Q). We use this partial resolution to show the codimension-2 rational cohomology group of SLn(Z) vanishes for n ≥ 3. This resolves a case of a conjecture of Church–Farb–Putman. We also produce lower bounds for the codimension-1 cohomology of certain congruence subgroups of SLn(Z).
more »
« less
Stability in the high-dimensional cohomology of congruence subgroups
We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $$\mathbf{SL}_{n}(\mathbb{Z})$$ . This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $$\mathbf{SL}_{n}(K)$$ for $$K$$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $$\mathbf{SL}_{n}(\mathbb{Z})$$ .
more »
« less
- Award ID(s):
- 1709726
- PAR ID:
- 10161161
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 156
- Issue:
- 4
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 822 to 861
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper we prove a result on the effective generation of pluri-canonical linear systems on foliated surfaces of general type. Fix a function {P:\mathbb{Z}_{\geq 0}\to\mathbb{Z}} , then there exists an integer {N>0} such that if {(X,{\mathcal{F}})} is a canonical or nef model of a foliation of general type with Hilbert polynomial {\chi(X,{\mathcal{O}}_{X}(mK_{\mathcal{F}}))=P(m)} for all {m\in\mathbb{Z}_{\geq 0}} , then {|mK_{\mathcal{F}}|} defines a birational map for all {m\geq N} . On the way, we also prove a Grauert–Riemenschneider-type vanishing theorem for foliated surfaces with canonical singularities.more » « less
-
Abstract Let Γ be a Schottky semigroup in {\mathrm{SL}_{2}(\mathbf{Z})} ,and for {q\in\mathbf{N}} , let {\Gamma(q):=\{\gamma\in\Gamma:\gamma=e~{}(\mathrm{mod}~{}q)\}} be its congruence subsemigroupof level q . Let δ denote the Hausdorff dimension of the limit set of Γ.We prove the following uniform congruence counting theoremwith respect to the family of Euclidean norm balls {B_{R}} in {M_{2}(\mathbf{R})} of radius R :for all positive integer q with no small prime factors, \#(\Gamma(q)\cap B_{R})=c_{\Gamma}\frac{R^{2\delta}}{\#(\mathrm{SL}_{2}(%\mathbf{Z}/q\mathbf{Z}))}+O(q^{C}R^{2\delta-\epsilon}) as {R\to\infty} for some {c_{\Gamma}>0,C>0,\epsilon>0} which are independent of q .Our technique also applies to give a similar counting result for the continued fractions semigroup of {\mathrm{SL}_{2}(\mathbf{Z})} ,which arises in the study of Zaremba’s conjecture on continued fractions.more » « less
-
We give an integrability criterion on a real-valued non-increasing function $$\unicode[STIX]{x1D713}$$ guaranteeing that for almost all (or almost no) pairs $$(A,\mathbf{b})$$ , where $$A$$ is a real $$m\times n$$ matrix and $$\mathbf{b}\in \mathbb{R}^{m}$$ , the system $$\begin{eqnarray}\Vert A\mathbf{q}+\mathbf{b}-\mathbf{p}\Vert ^{m}<\unicode[STIX]{x1D713}(T),\quad \Vert \mathbf{q}\Vert ^{n}more » « less
-
null (Ed.)Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d .more » « less
An official website of the United States government

