skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the codimension-two cohomology of SLn(ℤ).
Borel–Serre proved that SL_n(Z) is a virtual duality group of dimension (n choose 2) and the Steinberg module St_n(Q) is its dualizing module. This module is the top-dimensional homology group of the Tits building associated to SL_n(Q). We determine the “relations among the relations” of this Steinberg module. That is, we construct an explicit partial resolution of length two of the SL_n(Z)-module St_n(Q). We use this partial resolution to show the codimension-2 rational cohomology group of SLn(Z) vanishes for n ≥ 3. This resolves a case of a conjecture of Church–Farb–Putman. We also produce lower bounds for the codimension-1 cohomology of certain congruence subgroups of SLn(Z).  more » « less
Award ID(s):
2142709 2202943
PAR ID:
10609181
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Advances in Mathematics
Volume:
451
Issue:
C
ISSN:
0001-8708
Page Range / eLocation ID:
109795
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $$\mathbf{SL}_{n}(\mathbb{Z})$$ . This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $$\mathbf{SL}_{n}(K)$$ for $$K$$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $$\mathbf{SL}_{n}(\mathbb{Z})$$ . 
    more » « less
  2. (3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of \mathbb{Z}_2 ℤ 2 gauge theory with fermionic charges, in \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ( D_n D n ) and alternating ( A_6 A 6 ) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H^4 H 4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A_6 A 6 gauge theory. 
    more » « less
  3. Abstract The Torelli group of $$W_g = \#^g S^n \times S^n$$ is the group of diffeomorphisms of $$W_g$$ fixing a disc that act trivially on $$H_n(W_g;\mathbb{Z} )$$ . The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $$\text{Sp}_{2g}(\mathbb{Z} )$$ or $$\text{O}_{g,g}(\mathbb{Z} )$$ . In this article we prove that for $$2n \geq 6$$ and $$g \geq 2$$ , they are in fact algebraic representations. Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We further prove that the classifying space of the Torelli group is nilpotent. 
    more » « less
  4. Abstract We compute the monodromy of the mirabolic $$\mathcal{D}$$-module for all values of the parameters $$(\vartheta ,c)$$ in rank 1 and outside an explicit codimension 2 set of values in ranks 2 and higher. This shows in particular that the Finkelberg–Ginzburg conjecture, which is known to hold for generic values of $$(\vartheta ,c)$$, fails at special values even in rank 1. Our main tools are Opdam’s shift operators and intertwiners for the extended affine Weyl group, which allow for the resolution of resonances outside the codimension two set. 
    more » « less
  5. Abstract. Information about the absolute Galois group G K of a number field K is encoded in how it acts on the ´etale fundamental group π of a curve X defined over K. In the case that K = Q ( ζ n ) is the cyclotomic field and X is the Fermat curve of degree n ≥ 3, Anderson determined the action of G K on the ´etale homology with coefficients in Z/nZ. The ´etale homology is the first quotient in the lower central series of the ´etale fundamental group. In this paper, we determine the Galois module structure of the graded Lie algebra for π. As a consequence, this determines the action of G K on all degrees of the associated graded quotient of the lower central series of the ´etale fundamental group of the Fermat curve of degree n, with coefficients in Z/nZ. 
    more » « less