Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It is well known that drag created by turbulent flow over a surface can be reduced by oscillating the surface in the direction transverse to the mean flow. Efforts to understand the mechanism by which this occurs often apply the solution for laminar flow in the infinite half-space over a planar, oscillating wall (Stokes’ second problem) through the viscous and buffer layer of the streamwise turbulent flow. This approach is used for flows having planar surfaces, such as channel flow, and flows over curved surfaces, such as the interior of round pipes. However, surface curvature introduces an additional effect that can be significant, especially when the viscous region is not small compared to the pipe radius. The exact solutions for flow over transversely oscillating walls in a laminar pipe and planar channel flow are compared to the solution of Stokes’ second problem to determine the effects of wall curvature and/or finite domain size. It is shown that a single non-dimensional parameter, the Womersley number, can be used to scale these effects and that both effects become small at a Womersley number of greater than about 6.51, which is the Womersley number based on the thickness of the Stokes’ layer ofmore »Free, publicly-accessible full text available October 27, 2023
-
The turbulent wake flow past a sphere at ReD= 3700 is investigated via Direct Numerical Simulation (DNS). The characteristic motions in the wake flow, such as vortex shedding and bubble pumping are identified by the probes placed in the near wake with a dominating frequency of St= fu∞/D= 0.22 and 0.004, respectively. The modal analysis is conducted in the wake area using Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). The vortex shedding and bubble pumping motions are also captured by the modal analysis. The results from POD and DMD show comparable patterns of both characteristic motions. For the bubble pumping motion, the dominating frequency of the corresponding POD mode is St= 0.004, while the DMD mode that is directly related to the separation bubble has the frequency of St= 0.009.Free, publicly-accessible full text available July 19, 2023
-
A high-order in space spectral-element methodology for the solution of a strongly coupled fluid-structure interaction (FSI) problem is developed. A methodology is based on a partitioned solution of incompressible fluid equations on body-fitted grids, and nonlinearly-elastic solid deformation equations coupled via a fixed-point iteration approach with Aitken relaxation. A comprehensive verification strategy of the developed methodology is presented, including h-, p-and temporal refinement studies. An expected order of convergence is demonstrated first separately for the corresponding fluid and solid solvers, followed by a self-convergence study on a coupled FSI problem (self-convergence refers to a convergence to a reference solution obtained with the same solver at higher resolution). To this end, a new three-dimensional fluid-structure interaction benchmark is proposed for a verification of the FSI codes, which consists of a fluid flow in a channel with one rigid and one flexible wall. It is shown that, due to a consistent problem formulation, including initial and boundary conditions, a high-order spatial convergence on a fully coupled FSI problem can be demonstrated. Finally, a developed framework is applied successfully to a Direct Numerical Simulation of a turbulent flow in a channel interacting with a compliant wall, where the fluid-structure interface is fully resolved.
-
We investigate the spatial organization and temporal dynamics of large-scale, coherent structures in turbulent Rayleigh–Bénard convection via direct numerical simulation of a 6.3 aspect-ratio cylinder with Rayleigh and Prandtl numbers of 9.6×107 and 6.7 , respectively. Fourier modal decomposition is performed to investigate the structural organization of the coherent turbulent motions by analysing the length scales, time scales and the underlying dynamical processes that are ultimately responsible for the large-scale structure formation and evolution. We observe a high level of rotational symmetry in the large-scale structure in this study and that the structure is well described by the first four azimuthal Fourier modes. Two different large-scale organizations are observed during the duration of the simulation and these patterns are dominated spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. Studies of the transition between these two large-scale patterns, radial and vertical variations in the azimuthal energy spectra, as well as the spatial and modal variations in the system's correlation time are conducted. Rotational dynamics are observed for individual Fourier modes and the global structure with strong similarities to the dynamics that have been reported for unit aspect-ratio domains in prior works. It is shown that themore »
-
Large scale coherent structures in the atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In order to understand the dynamics of large scale structures, we perform proper orthogonal decomposition (POD) analysis of a finite sized wind turbine array canopy in the current paper. The POD analysis sheds light on the dynamics of large scale coherent modes as well as on the scaling of the eigenspectra in the heterogeneous wind farm. We also propose adapting a novel Fourier-POD (FPOD) modal decomposition which performs POD analysis of spanwise Fourier-transformed velocity. The FPOD methodology helps us in decoupling the length scales in the spanwise and streamwise direction when studying the 3D energetic coherent modes. Additionally, the FPOD eigenspectra also provide deeper insights for understanding the scaling trends of the three-dimensional POD eigenspectra and its convergence, which is inherently tied to turbulent dynamics. Understanding the behaviour of large scale structures in wind farm flows would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidancemore »
-
Presented are vorticity statistics in drag reduced turbulent pipe flow at low and moderate Reynolds number. Drag reduction is achieved by transverse wall oscillations. Quantities of interest are the distributions of streamwise vorticity in the viscous and lower part of the buffer layer of the flow. We observe a sinusoidal pattern appearing in the distribution that is associated with the strengthening and weakening of counter-rotating vortex pairs. Presented alongside the phase varying distributions of vorticity are the phase averaged distribution of azimuthal and radial velocity fluctuations. The information presented provides a statistical evidence for the new proposed model for the near wall vortex distortion.