skip to main content

Search for: All records

Creators/Authors contains: "Peterson, B M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present the first intensive continuum reverberation mapping study of the high accretion-rate Seyfert galaxy Mrk 110. The source was monitored almost daily for more than 200 d with the Swift X-ray and ultraviolet (UV)/optical telescopes, supported by ground-based observations from Las Cumbres Observatory, the Liverpool Telescope, and the Zowada Observatory, thus extending the wavelength coverage to 9100 Å. Mrk 110 was found to be significantly variable at all wavebands. Analysis of the intraband lags reveals two different behaviours, depending on the time-scale. On time-scales shorter than 10 d the lags, relative to the shortest UV waveband (∼1928 Å), increase with increasing wavelength up to a maximum of ∼2 d lag for the longest waveband (∼9100 Å), consistent with the expectation from disc reverberation. On longer time-scales, however, the g-band lags the Swift BAT hard X-rays by ∼10 d, with the z-band lagging the g-band by a similar amount, which cannot be explained in terms of simple reprocessing from the accretion disc. We interpret this result as an interplay between the emission from the accretion disc and diffuse continuum radiation from the broad-line region.
  2. ABSTRACT The structure of the broad-line region (BLR) is an essential ingredient in the determination of active galactic nucleus (AGN) virial black hole masses, which in turn are important to study the role of black holes in galaxy evolution. Constraints on the BLR geometry and dynamics can be obtained from velocity-resolved studies using reverberation mapping data (i.e. monitoring data). However, monitoring data are observationally expensive and only available for a limited sample of AGNs, mostly confined to the local Universe. Here, we explore a new version of a Bayesian inference, physical model of the BLR that uses an individual spectrum and prior information on the BLR size from the radius–luminosity relation, to model the AGN BLR geometry and dynamics. We apply our model to a sample of 11 AGNs, which have been previously modelled using monitoring data. Our single-epoch BLR model is able to constrain some of the BLR parameters with inferred parameter values that agree within the uncertainties with those determined from the modelling of monitoring data. We find that our model is able to derive stronger constraints on the BLR for AGNs with broad emission lines that qualitatively have more substructure and more asymmetry, presumably as they containmore »more information to constrain the physical model. The performance of this model makes it a practical and cost-effective tool to determine some of the BLR properties of a large sample of low- and high-redshift AGNs, for which monitoring data are not available.« less
  3. ABSTRACT We broadly explore the effects of systematic errors on reverberation mapping lag uncertainty estimates from javelin and the interpolated cross-correlation function (ICCF) method. We focus on simulated light curves from random realizations of the light curves of five intensively monitored AGNs. Both methods generally work well even in the presence of systematic errors, although javelin generally provides better error estimates. Poorly estimated light-curve uncertainties have less effect on the ICCF method because, unlike javelin , it does not explicitly assume Gaussian statistics. Neither method is sensitive to changes in the stochastic process driving the continuum or the transfer function relating the line light curve to the continuum. The only systematic error we considered that causes significant problems is if the line light curve is not a smoothed and shifted version of the continuum light curve but instead contains some additional sources of variability.