Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 8, 2025
-
The Western Tropical North Atlantic is a highly dynamic marine system where the Amazon River Plume (ARP) generates a patchwork of environmental conditions that favor different phytoplankton groups. To study phytoplanktonic community structure in such heterogeneous conditions, we used a set of five standard ship-based measurements taken from oceanographic surveys between 2010 and 2021 to characterize different habitat types. We then utilized a variety of multiparametric approaches to examine phytoplankton biodiversity in the different habitats to assess the biological relevance of our delineated habitats. Our approach generated a consistent set of habitat types across cruises carried out in multiple different years and the Amazon’s two predominant (wet and dry) seasons. Our phytoplankton community analyses revealed strong distinctions among all habitats along the plume gradient using
in-vivo fluorescence and diagnostic pigments, and clear contrasts of diazotroph community along the mesohaline waters using direct cell-count, a pattern consistent with niche partitioning among similar species. The few apparent mismatches we found between phytoplankton community composition and habitat may reflect recent hydrographic changes driven by mixing and/or upwelling and thus may be a useful index to biologically-relevant temporal variation. Our habitat classification approach is straightforward and broadly applicable in identifying biologically distinct areas within heterogeneous and dynamic regions of the ocean.Free, publicly-accessible full text available January 29, 2025 -
Abstract. The trace metal iron (Fe) is an essential micronutrient that controls phytoplankton productivity, which subsequently affects organic matter cycling with feedback on the cycling of macronutrients. Along the continental margin of the US West Coast, high benthic Fe release has been documented, in particular from deep anoxic basins in the Southern California Borderland. However, the influence of this Fe release on surface primary production remains poorly understood. In the present study from the Santa Barbara Basin, in situ benthic Fe fluxes were determined along a transect from shallow to deep sites in the basin. Fluxes ranged between 0.23 and 4.9 mmol m−2 d−1, representing some of the highest benthic Fe fluxes reported to date. To investigate the influence of benthic Fe release from the oxygen-deficient deep basin on surface phytoplankton production, we combined benthic flux measurements with numerical simulations using the Regional Ocean Modeling System coupled to the Biogeochemical Elemental Cycling (ROMS-BEC) model. For this purpose, we updated the model Fe flux parameterization to include the new benthic flux measurements from the Santa Barbara Basin. Our simulations suggest that benthic Fe fluxes enhance surface primary production, supporting a positive feedback on benthic Fe release by decreasing oxygen in bottom waters. However, a reduction in phytoplankton Fe limitation by enhanced benthic fluxes near the coast may be partially compensated for by increased nitrogen limitation further offshore, limiting the efficacy of this positive feedback.
Free, publicly-accessible full text available February 14, 2025 -
Abstract Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole‐body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor‐encoding
Ovol1 andOvol2 in adult epidermis results in barrier dysregulation through impacting epithelial‐mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long‐term consequences of epidermal‐specificOvol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole‐body metabolism that is in part mediated through aberrant immune activation. -
This paper presents a new, robust and reliable robot capable of carrying heavy equipment loads without sacrificing mobility that can improve the safety and detail of steel inspections in difficult access areas. In addition, the robot functions with an embedded NORTEC 600, eddy current sensor, and a GoPro camera that allows it to conduct nondestructive evaluation and collect high-resolution imagery data of steel structures. The data is processed into a heatmap for quick and easy interpretation by the user. In order to verify the robot’s designed capabilities, a set of mechanical analyses were performed to quantify the designed robot’s limits and failure mechanics. The application of our robot would increase the safety of an inspector by reducing the frequency they would need to hang underneath a bridge or travel along a narrow section. Demonstration of the robot deployments can be seen in this link: https://youtu.be/8d78d7CWXYkmore » « less
-
The research of robots to assist people in inspecting the quality of steel bridges has attracted significant attention in recent years. However, the intricate structure of the steel bridge components poses a massive challenge for researchers to move the robot across the bridge to perform the tests. This paper presents a new development of a hybrid flying-climbing robotic system, which can move flexibly and quickly to different positions on the steel bridge. In addition to using high-resolution cameras for an overview, the design allows the robot to stick to steel surfaces and act as a mobile robot for more detailed inspection with our developed giant magneto-resistance (GMR) sensor array system. We conduct a mechanical analysis to show the climbing capability of the mobile part. Additionally, we develop a landing algorithm to allow the robot to land on a steel surface to perform in-depth inspection safely. The designed GMR sensor array has shown the capability of detecting steel cracks to support the in-depth inspection mode. We have tested and validated our developed robot on real bridges to ensure that the design works well and is stable.more » « less
-
The advanced robotic and automation (ARA) lab has developed and successfully implemented a design inspired by many of the various cutting edge steel inspection robots to date. The combination of these robots concepts into a unified design came with its own set of challenges since the parameters for these features sometimes conflicted. An extensive amount of design and analysis work was performed by the ARA lab in order to find a carefully tuned balance between the implemented features on the ARA robot and general functionality. Having successfully managed to implement this conglomerate of features represents a breakthrough to the industry of steel inspection robots as the ARA lab robot is capable of traversing most complex geometries found on steel structures while still maintaining its ability to efficiently travel along these structures; a feat yet to be done until now.more » « less
-
null (Ed.)An industrial environment usually has a lot of waste that could cause harmful effects to both the products and the workers resulting in product defects, itchy eyes or chronic obstructive pulmonary disease, etc. While automatic cleaning robots could be used, the environment is often too large for one robot to clean alone in addition to the fact that it does not have adequate stored dirt capacity. We present a multi-robotic dirt cleaning algorithm for coordinating multiple iRobot-Creates as a team to efficiently clean an environment. Often, since some spaces in the environment are clean while others are dirty, our multi-robotic system possesses a path planning algorithm to allow the robot team to clean efficiently by increasing vacuum motor power on the area with higher dirt level. Overall, our multi-robotic system outperforms the single robot system in time efficiency while having almost the same total battery usage and cleaning efficiency result. The project source codes is available on our ARA lab's github: https://github.com/aralab-unr/multi-robot-cleaning.more » « less