skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phelps, Taylor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ObjectivesAn accident during arboreal locomotion can lead to risky falls, but it remains unclear that the extent to which primates, as adept arborealists, change their locomotion in response to the perceived risk of moving on high supports in the tree canopy. By using more stable forms of locomotion on higher substrates, primates might avoid potentially fatal consequences. Materials and MethodsUsing high‐speed cameras, we recorded the quadrupedal locomotion of four wild lemur species—Eulemur rubriventer,Eulemur rufifrons, Hapalemur aureus, and Lemur catta(N = 113 total strides). We quantified the height, diameter, and angular orientation of locomotor supports using remote sensors and tested the influence of support parameters on gait kinematics, specifically predicting that in response to increasing substrate height, lemurs would decrease speed and stride frequency, but increase stride length and the mean number of supporting limbs. ResultsLemurs did not adjust stride frequency on substrates of varying height. Adjustments to speed, stride length, and the mean number of supporting limbs in response to varying height often ran counter to predictions. OnlyE. rubriventerdecreased speed and increased the mean number of supporting limbs on higher substrates. DiscussionResults suggest that quadrupedal walking is a relatively safe form of locomotion for lemurs, requiring subtle changes in gait to increase stability on higher—that is, potentially riskier—substrates. Continued investigation of the impact of height on locomotion will be important to determine how animals assess risk in their environment and how they choose to use this information to move more safely. 
    more » « less
  2. Abstract Arboreal locomotion is precarious and places multiple challenges upon stability. Studies have shown that captive primates respond to narrower and steeper supports by flexing limb joints and adopting a compliant gait. We tested whether these same kinematic responses are adopted by wild primates freely ranging over a variety of supports in their natural habitats. We recorded five species of platyrrhines, five species of catarrhines, and four species of strepsirrhines with modified GoPro cameras and used remote measurement to quantify substrate characteristics. Video images were imported into ImageJ to measure the angular kinematics of limb joints during quadrupedal locomotion on a variety of arboreal supports. We statistically tested for associations between joint posture and substrate characteristics, and then disentangled the influence of phylogeny and substrate on limb joint kinematics using variation partitioning and redundancy analysis. Our results partially confirm previous kinematic studies and suggest variation in support orientation, more than diameter or compliance, influences quadrupedal gait kinematics. Phylogenetic relatedness explained more variation in the data than substrate properties. This suggests primates either prospectively choose relatively ‘safe’ substrates for locomotion, or that they possess locomotor adaptations independent of limb joint kinematics per se to overcome the challenges of the precarious arboreal environment. 
    more » « less
  3. Abstract Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance. However, prior anatomical studies have found that arboreal taxa frequently have longer tails for their body size than their terrestrial counterparts, and prior laboratory studies of tail kinematics and the effects of tail reduction in focal taxa have broadly supported the hypothesis that the tail is functionally important for maintaining balance on narrow and mobile substrates. In this set of studies, we extend this work in two ways. First, we used a laboratory dataset on three-dimensional segmental kinematics and tail inertial properties in squirrel monkeys (Saimiri boliviensis) to investigate how tail angular momentum is modulated during steady-state locomotion on narrow supports. In the second study, we used a quantitative dataset on quadrupedal locomotion in wild platyrrhine monkeys to investigate how free-ranging arboreal animals adjust tail movements in response to substrate variation, focusing on kinematic measures validated in prior laboratory studies of tail mechanics (including the laboratory data presented). Our laboratory results show that S. boliviensis significantly increase average tail angular momentum magnitudes and amplitudes on narrow supports, and primarily regulate that momentum by adjusting the linear and angular velocity of the tail (rather than via changes in tail posture per se). We build on these findings in our second study by showing that wild platyrrhines responded to the precarity of narrow and mobile substrates by extending the tail and exaggerating tail displacements, providing ecological validity to the laboratory studies of tail mechanics presented here and elsewhere. In conclusion, our data support the hypothesis that the long and mobile tails of arboreal animals serve a biological role of enhancing stability when moving quadrupedally over narrow and mobile substrates. Tail angular momentum could be used to cancel out the angular momentum generated by other parts of the body during steady-state locomotion, thereby reducing whole-body angular momentum and promoting stability, and could also be used to mitigate the effects of destabilizing torques about the support should the animals encounter large, unexpected perturbations. Overall, these studies suggest that long and mobile tails should be considered among the fundamental suite of adaptations promoting safe and efficient arboreal locomotion. 
    more » « less
  4. Abstract ObjectivesPrimate diagonal sequence (DS) gaits are often argued to be an adaptation for moving and foraging in the fine‐branch niche; however, existing data have come predominantly from laboratory studies that are limited in taxonomic breadth and fail to account for the structural and ecological variation of natural substrates. We test the extent to which substrate diameter and orientation influence gait sequence type and limb phase in free‐ranging primates, as well as how phylogenetic relatedness might condition response patterns. Materials and methodsWe filmed quadrupedal locomotion in 11 platyrrhine species at field sites in Ecuador and Costa Rica and measured the diameter and orientation of locomotor substrates using remote sensors. We quantified limb phase values and classified strides by gait sequence type (N= 988 strides). ResultsOur results show that most of the species in our sample consistently used DS gaits, regardless of substrate diameter or orientation; however, all taxa also used asymmetrical and/or lateral sequence gaits. By incorporating phylogenetic eigenvectors into our models, we found significant differences in gait sequence patterns and limb phase values among the major platyrrhine clades, suggesting that phylogeny may be a better predictor of gait than substrate diameter or orientation. DiscussionOur field data generally corroborate locomotor patterns from laboratory studies but capture additional aspects of gait variability and flexibility in response to the complexity of natural environments. Overall, our results suggest that DS gaits are not exclusively tailored to narrow or oblique substrates but are used on arboreal substrates in general. 
    more » « less
  5. Abstract The grasping capabilities and gait kinematics characteristic of primates are often argued to be adaptations for safely moving on small terminal branches. The goal of this study was to identify whether Eastern gray squirrels (Sciurus carolinensis)—arboreal rodents that frequently move and forage on small branches, lack primate‐like grasping and gait patterns, and arguably represent extant analogs of a stem primate ancestor—adjust gait kinematics to narrow and nonhorizontal branches. We studied locomotor kinematics of free‐ranging and laboratory‐housed squirrels moving over various substrates. We used high‐speed video to film (a) a population of free‐ranging squirrels moving on natural substrates and (b) laboratory‐housed squirrels moving on horizontal poles. Substrates were coded as small, medium, or large relative to squirrel trunk diameter, and as inclined, declined, or horizontal. Free‐ranging squirrels used more gallops and half‐bounds on small‐ and medium‐sized substrates, and more high‐impact bounds, with reduced limb‐lead durations, on declined substrates. Laboratory squirrels moved at higher speeds than free‐ranging squirrels and responded to decreasing diameter by using more gallops and half‐bounds, lowering speed, and—controlling for speed—increasing mean duty factor, mean number of supporting limbs, and relative forelimb lead duration. Our inability to detect substantial diameter or orientation‐related gait adjustments in the wild may be due to a limited accounting of confounding influences (e.g., substrate compliance). Ultimately, studies assessing stability measures (e.g., center of mass fluctuations and peak vertical force) are required to assess whether primates' enhanced grasping and gait patterns engender performance advantages on narrow or oblique substrates. 
    more » « less